Spaces:
Sleeping
Sleeping
Initial commit
Browse files
app.py
ADDED
|
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import time
|
| 3 |
+
from typing import Iterator, List, Tuple, Any
|
| 4 |
+
|
| 5 |
+
# 模拟流式API响应
|
| 6 |
+
def simulate_stream_response(message: str) -> Iterator[str]:
|
| 7 |
+
"""模拟API的流式响应"""
|
| 8 |
+
response = f"收到您的问题:'{message}'。这是一个模拟的AI助手回答,一个字一个字地流式输出。我正在尝试模仿Claude的回答风格,希望这个演示能够满足您的需求。"
|
| 9 |
+
|
| 10 |
+
for char in response:
|
| 11 |
+
yield char
|
| 12 |
+
time.sleep(0.05) # 模拟打字延迟
|
| 13 |
+
|
| 14 |
+
# 修复后的流式响应函数
|
| 15 |
+
def stream_response(message: str, history: List[Tuple[str, str]]) -> Iterator[List[Tuple[str, Any]]]:
|
| 16 |
+
"""流式响应并格式化为Gradio Chatbot需要的格式"""
|
| 17 |
+
# 添加用户消息到历史
|
| 18 |
+
history = history + [(message, "")]
|
| 19 |
+
|
| 20 |
+
# 流式更新AI的回复
|
| 21 |
+
bot_message = ""
|
| 22 |
+
response_generator = simulate_stream_response(message)
|
| 23 |
+
|
| 24 |
+
for token in response_generator:
|
| 25 |
+
bot_message += token
|
| 26 |
+
# 更新最后一条消息的AI回复部分
|
| 27 |
+
updated_history = history.copy()
|
| 28 |
+
updated_history[-1] = (message, bot_message)
|
| 29 |
+
yield updated_history
|
| 30 |
+
|
| 31 |
+
# 创建自定义CSS样式
|
| 32 |
+
custom_css = """
|
| 33 |
+
.gradio-container {
|
| 34 |
+
font-family: 'Arial', sans-serif;
|
| 35 |
+
}
|
| 36 |
+
"""
|
| 37 |
+
|
| 38 |
+
# 创建Gradio界面
|
| 39 |
+
def create_demo():
|
| 40 |
+
with gr.Blocks(css=custom_css) as demo:
|
| 41 |
+
gr.Markdown("# AI 问答助手")
|
| 42 |
+
gr.Markdown("这是一个类似Claude的问答系统,会逐字流式输出回答")
|
| 43 |
+
|
| 44 |
+
chatbot = gr.Chatbot(
|
| 45 |
+
show_label=False,
|
| 46 |
+
height=500,
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
with gr.Row():
|
| 50 |
+
msg = gr.Textbox(
|
| 51 |
+
show_label=False,
|
| 52 |
+
placeholder="在这里输入您的问题...",
|
| 53 |
+
scale=9
|
| 54 |
+
)
|
| 55 |
+
submit = gr.Button("发送", scale=1)
|
| 56 |
+
|
| 57 |
+
with gr.Accordion("示例问题", open=False):
|
| 58 |
+
examples = gr.Examples(
|
| 59 |
+
examples=[
|
| 60 |
+
["材料管道中的数据预处理步骤有哪些?"],
|
| 61 |
+
["如何优化材料管道的计算效率?"],
|
| 62 |
+
["材料管道中常用的特征工程方法有哪些?"],
|
| 63 |
+
["如何在材料管道中整合机器学习模型?"],
|
| 64 |
+
["材料管道中的高通量筛选技术有什么优势?"]
|
| 65 |
+
],
|
| 66 |
+
inputs=msg
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
# 设置提交操作
|
| 70 |
+
submit_event = submit.click(
|
| 71 |
+
fn=stream_response,
|
| 72 |
+
inputs=[msg, chatbot],
|
| 73 |
+
outputs=[chatbot],
|
| 74 |
+
queue=True
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
# 清空输入框
|
| 78 |
+
submit_event.then(
|
| 79 |
+
fn=lambda: "",
|
| 80 |
+
inputs=None,
|
| 81 |
+
outputs=[msg]
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
# 回车键提交
|
| 85 |
+
msg.submit(
|
| 86 |
+
fn=stream_response,
|
| 87 |
+
inputs=[msg, chatbot],
|
| 88 |
+
outputs=[chatbot],
|
| 89 |
+
queue=True
|
| 90 |
+
).then(
|
| 91 |
+
fn=lambda: "",
|
| 92 |
+
inputs=None,
|
| 93 |
+
outputs=[msg]
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
return demo
|
| 97 |
+
|
| 98 |
+
# 创建演示
|
| 99 |
+
demo = create_demo()
|
| 100 |
+
|
| 101 |
+
# 主函数
|
| 102 |
+
if __name__ == "__main__":
|
| 103 |
+
demo.queue() # 启用队列处理
|
| 104 |
+
demo.launch() # 移除自定义参数,Hugging Face会自动处理
|
| 105 |
+
else:
|
| 106 |
+
# 用于Hugging Face Spaces部署
|
| 107 |
+
demo.queue()
|