Update app.py
Browse files
app.py
CHANGED
|
@@ -1,97 +1,80 @@
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
-
|
|
|
|
|
|
|
| 4 |
|
| 5 |
-
#
|
| 6 |
-
|
| 7 |
-
documents_path="./documents",
|
| 8 |
-
embedding_model="sentence-transformers/all-MiniLM-L6-v2",
|
| 9 |
-
vector_store_type="faiss",
|
| 10 |
-
chunk_size=1000,
|
| 11 |
-
chunk_overlap=200,
|
| 12 |
-
persist_directory="./vector_store"
|
| 13 |
-
)
|
| 14 |
|
| 15 |
-
|
| 16 |
-
def upload_documents(files, chunk_size, chunk_overlap, embedding_model, vector_store_type):
|
| 17 |
-
# Create a temporary directory for uploaded files
|
| 18 |
-
os.makedirs("./uploaded_docs", exist_ok=True)
|
| 19 |
-
|
| 20 |
-
# Save uploaded files
|
| 21 |
-
for file in files:
|
| 22 |
-
file_path = os.path.join("./uploaded_docs", os.path.basename(file.name))
|
| 23 |
-
with open(file_path, "wb") as f:
|
| 24 |
-
f.write(file.read())
|
| 25 |
-
|
| 26 |
-
# Initialize a new RAG Tool with the uploaded documents
|
| 27 |
-
global rag_tool
|
| 28 |
-
rag_tool = RAGTool(
|
| 29 |
-
documents_path="./uploaded_docs",
|
| 30 |
-
embedding_model=embedding_model,
|
| 31 |
-
vector_store_type=vector_store_type,
|
| 32 |
-
chunk_size=int(chunk_size),
|
| 33 |
-
chunk_overlap=int(chunk_overlap),
|
| 34 |
-
persist_directory="./uploaded_vector_store"
|
| 35 |
-
)
|
| 36 |
-
|
| 37 |
-
return f"Documents uploaded and processed. Vector store created with {embedding_model} model."
|
| 38 |
|
| 39 |
-
#
|
| 40 |
-
|
| 41 |
-
global rag_tool
|
| 42 |
-
return rag_tool(query, top_k=int(top_k))
|
| 43 |
|
| 44 |
-
#
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
chunk_size = gr.Slider(200, 2000, value=1000, step=100, label="Chunk Size")
|
| 54 |
-
chunk_overlap = gr.Slider(0, 500, value=200, step=50, label="Chunk Overlap")
|
| 55 |
-
|
| 56 |
-
with gr.Column():
|
| 57 |
-
embedding_models = [
|
| 58 |
-
"sentence-transformers/all-MiniLM-L6-v2",
|
| 59 |
-
"BAAI/bge-small-en-v1.5",
|
| 60 |
-
"BAAI/bge-base-en-v1.5",
|
| 61 |
-
"thenlper/gte-small",
|
| 62 |
-
"thenlper/gte-base"
|
| 63 |
-
]
|
| 64 |
-
embedding_model = gr.Dropdown(
|
| 65 |
-
choices=embedding_models,
|
| 66 |
-
value="sentence-transformers/all-MiniLM-L6-v2",
|
| 67 |
-
label="Embedding Model"
|
| 68 |
-
)
|
| 69 |
-
vector_store_type = gr.Radio(
|
| 70 |
-
choices=["faiss", "chroma"],
|
| 71 |
-
value="faiss",
|
| 72 |
-
label="Vector Store Type"
|
| 73 |
-
)
|
| 74 |
|
| 75 |
-
|
| 76 |
-
|
| 77 |
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
|
|
|
| 82 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
-
with gr.
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
# Launch the app
|
| 97 |
if __name__ == "__main__":
|
|
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
+
import warnings
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
import shutil
|
| 6 |
|
| 7 |
+
# Suppress LangChain deprecation warnings
|
| 8 |
+
warnings.filterwarnings("ignore", category=DeprecationWarning)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
+
from rag_tool import RAGTool
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
+
# Initialize the RAG Tool
|
| 13 |
+
rag_tool = RAGTool()
|
|
|
|
|
|
|
| 14 |
|
| 15 |
+
# Function to handle document uploads
|
| 16 |
+
def upload_file(file):
|
| 17 |
+
try:
|
| 18 |
+
# Create documents directory if it doesn't exist
|
| 19 |
+
os.makedirs("./documents", exist_ok=True)
|
| 20 |
+
|
| 21 |
+
# Get the file path and name
|
| 22 |
+
file_path = Path(file.name)
|
| 23 |
+
destination = Path("./documents") / file_path.name
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
+
# Copy the file to documents directory
|
| 26 |
+
shutil.copy(file_path, destination)
|
| 27 |
|
| 28 |
+
# Configure RAG tool
|
| 29 |
+
rag_tool.configure(
|
| 30 |
+
documents_path=str(destination),
|
| 31 |
+
embedding_model="sentence-transformers/all-MiniLM-L6-v2",
|
| 32 |
+
persist_directory="./vector_store"
|
| 33 |
)
|
| 34 |
+
|
| 35 |
+
return f"File uploaded and processed: {file_path.name}"
|
| 36 |
+
except Exception as e:
|
| 37 |
+
return f"Error processing file: {str(e)}"
|
| 38 |
+
|
| 39 |
+
# Function to query the documents
|
| 40 |
+
def query_document(question):
|
| 41 |
+
try:
|
| 42 |
+
if not hasattr(rag_tool, 'vector_store') or rag_tool.vector_store is None:
|
| 43 |
+
return "Please upload a document first."
|
| 44 |
+
|
| 45 |
+
response = rag_tool(question)
|
| 46 |
+
return response
|
| 47 |
+
except Exception as e:
|
| 48 |
+
return f"Error querying document: {str(e)}"
|
| 49 |
+
|
| 50 |
+
# Create a simple Gradio interface
|
| 51 |
+
with gr.Blocks(title="RAG Tool") as demo:
|
| 52 |
+
gr.Markdown("# Document Question Answering System")
|
| 53 |
+
gr.Markdown("Upload a document (PDF, TXT) and ask questions about it")
|
| 54 |
|
| 55 |
+
with gr.Row():
|
| 56 |
+
with gr.Column():
|
| 57 |
+
file_input = gr.File(label="Upload Document")
|
| 58 |
+
upload_button = gr.Button("Process Document")
|
| 59 |
+
upload_result = gr.Textbox(label="Upload Status")
|
| 60 |
|
| 61 |
+
with gr.Column():
|
| 62 |
+
query_input = gr.Textbox(label="Ask a Question", placeholder="What would you like to know?")
|
| 63 |
+
query_button = gr.Button("Get Answer")
|
| 64 |
+
response_output = gr.Textbox(label="Answer")
|
| 65 |
+
|
| 66 |
+
# Set up the button click events
|
| 67 |
+
upload_button.click(
|
| 68 |
+
upload_file,
|
| 69 |
+
inputs=file_input,
|
| 70 |
+
outputs=upload_result
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
query_button.click(
|
| 74 |
+
query_document,
|
| 75 |
+
inputs=query_input,
|
| 76 |
+
outputs=response_output
|
| 77 |
+
)
|
| 78 |
|
| 79 |
# Launch the app
|
| 80 |
if __name__ == "__main__":
|