Spaces:
Running
Running
| from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC | |
| import torch | |
| import gradio as gr | |
| import librosa | |
| import os | |
| import subprocess | |
| # Install system dependencies | |
| subprocess.run(["apt-get", "update"], check=True) | |
| subprocess.run(["apt-get", "install", "-y", "espeak"], check=True) | |
| # load model and processor | |
| processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft") | |
| model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft") | |
| # define prediction function | |
| def audio2phoneme(audio_path): | |
| audio, sr = librosa.load(audio_path, sr=16000) | |
| input_values = processor(audio, return_tensors="pt", padding=True).input_values | |
| with torch.no_grad(): | |
| logits = model(input_values).logits | |
| predicted_ids = torch.argmax(logits, dim=-1) | |
| transcription = processor.batch_decode(predicted_ids) | |
| return ' '.join(transcription) | |
| app = gr.Interface( | |
| fn=audio2phoneme, | |
| inputs=gr.Audio(sources=["upload","microphone"], type="filepath"), | |
| outputs=gr.Textbox(label="Phoneme Transcription", show_copy_button=True, show_label=True), | |
| description="Get phonemes from audio", | |
| title="Audio to Phoneme Transcription using facebook/wav2vec2-lv-60-espeak-cv", | |
| ) | |
| # start space | |
| app.launch(share=True) |