--- title: NetraEmbed emoji: 👁️ colorFrom: yellow colorTo: purple sdk: gradio sdk_version: 6.0.2 app_file: app.py pinned: false license: mit short_description: Universal Multilingual Multimodal Document Retrieval --- # NetraEmbed - Universal Multilingual Multimodal Document Retrieval This Space demonstrates **NetraEmbed** and **ColNetraEmbed**, state-of-the-art multilingual multimodal document retrieval models based on the BiGemma3 and ColGemma3 architectures. ## Features - **NetraEmbed (BiGemma3)**: Single-vector embedding with Matryoshka representation for fast retrieval - **ColNetraEmbed (ColGemma3)**: Multi-vector embedding with late interaction for high-quality retrieval with attention heatmaps - **ZeroGPU Integration**: Efficient dynamic GPU allocation for on-demand model loading - **PDF Document Support**: Upload PDFs and perform semantic search across pages - **Side-by-side Comparison**: Compare both models simultaneously ## Citation If you use NetraEmbed or ColNetraEmbed in your research, please cite: ```bibtex @misc{kolavi2025m3druniversalmultilingualmultimodal, title={M3DR: Towards Universal Multilingual Multimodal Document Retrieval}, author={Adithya S Kolavi and Vyoman Jain}, year={2025}, eprint={2512.03514}, archivePrefix={arXiv}, primaryClass={cs.IR}, url={https://arxiv.org/abs/2512.03514} } ``` ## Links - 📄 [Paper](https://arxiv.org/abs/2512.03514) - 💻 [GitHub](https://github.com/adithya-s-k/colpali) - 🤗 [Models on Hugging Face](https://huggingface.co/Cognitive-Lab) - 🌐 [CognitiveLab Website](https://www.cognitivelab.in) ## Usage 1. **Load Model**: Select your preferred model (NetraEmbed, ColNetraEmbed, or Both) and click "Load Model" 2. **Upload PDF**: Upload a PDF document to index 3. **Index Document**: Click "Index Document" to process and embed the pages 4. **Query**: Enter your search query and click "Search" to retrieve relevant pages This Space uses ZeroGPU for dynamic GPU allocation. Models are loaded on-demand when functions are called. Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference