Create handler.py
Browse files- handler.py +109 -0
handler.py
ADDED
|
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
import torch
|
| 3 |
+
import os
|
| 4 |
+
|
| 5 |
+
from pyannote.audio import Pipeline
|
| 6 |
+
from transformers import pipeline, AutoModelForCausalLM
|
| 7 |
+
from diarization_utils import diarize
|
| 8 |
+
from huggingface_hub import HfApi
|
| 9 |
+
from transformers.pipelines.audio_utils import ffmpeg_read
|
| 10 |
+
from pydantic import Json, BaseModel, ValidationError
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
logger = logging.getLogger(__name__)
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class InferenceConfig(BaseModel):
|
| 17 |
+
task: Literal["transcribe", "translate"] = "transcribe"
|
| 18 |
+
batch_size: int = 24
|
| 19 |
+
assisted: bool = False
|
| 20 |
+
chunk_length_s: int = 30
|
| 21 |
+
sampling_rate: int = 16000
|
| 22 |
+
language: Optional[str] = None
|
| 23 |
+
num_speakers: Optional[int] = None
|
| 24 |
+
min_speakers: Optional[int] = None
|
| 25 |
+
max_speakers: Optional[int] = None
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
class EndpointHandler():
|
| 29 |
+
def __init__(self):
|
| 30 |
+
|
| 31 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
| 32 |
+
logger.info(f"Using device: {device.type}")
|
| 33 |
+
torch_dtype = torch.float32 if device.type == "cpu" else torch.float16
|
| 34 |
+
|
| 35 |
+
self.assistant_model = AutoModelForCausalLM.from_pretrained(
|
| 36 |
+
os.getenv("ASSISTANT_MODEL"),
|
| 37 |
+
torch_dtype=torch_dtype,
|
| 38 |
+
low_cpu_mem_usage=True,
|
| 39 |
+
use_safetensors=True
|
| 40 |
+
) if os.getenv("ASSISTANT_MODEL") else None
|
| 41 |
+
|
| 42 |
+
if self.assistant_model:
|
| 43 |
+
self.assistant_model.to(device)
|
| 44 |
+
|
| 45 |
+
self.asr_pipeline = pipeline(
|
| 46 |
+
"automatic-speech-recognition",
|
| 47 |
+
model=os.getenv("ASR_MODEL"),
|
| 48 |
+
torch_dtype=torch_dtype,
|
| 49 |
+
device=device
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
if os.getenv("DIARIZATION_MODEL"):
|
| 53 |
+
# diarization pipeline doesn't raise if there is no token
|
| 54 |
+
HfApi().whoami(model_settings.hf_token)
|
| 55 |
+
self.diarization_pipeline = Pipeline.from_pretrained(
|
| 56 |
+
checkpoint_path=os.getenv("DIARIZATION_MODEL"),
|
| 57 |
+
use_auth_token=os.getenv("HF_TOKEN"),
|
| 58 |
+
)
|
| 59 |
+
self.diarization_pipeline.to(device)
|
| 60 |
+
else:
|
| 61 |
+
self.diarization_pipeline = None
|
| 62 |
+
|
| 63 |
+
async def __call__(self, file, parameters):
|
| 64 |
+
try:
|
| 65 |
+
parameters = InferenceConfig(**parameters)
|
| 66 |
+
except ValidationError as e:
|
| 67 |
+
logger.error(f"Error validating parameters: {e}")
|
| 68 |
+
raise ValidationError(f"Error validating parameters: {e}")
|
| 69 |
+
|
| 70 |
+
logger.info(f"inference parameters: {parameters}")
|
| 71 |
+
|
| 72 |
+
generate_kwargs = {
|
| 73 |
+
"task": parameters.task,
|
| 74 |
+
"language": parameters.language,
|
| 75 |
+
"assistant_model": self.assistant_model if parameters.assisted else None
|
| 76 |
+
}
|
| 77 |
+
|
| 78 |
+
try:
|
| 79 |
+
asr_outputs = self.asr_pipeline(
|
| 80 |
+
file,
|
| 81 |
+
chunk_length_s=parameters.chunk_length_s,
|
| 82 |
+
batch_size=parameters.batch_size,
|
| 83 |
+
generate_kwargs=generate_kwargs,
|
| 84 |
+
return_timestamps=True,
|
| 85 |
+
)
|
| 86 |
+
except RuntimeError as e:
|
| 87 |
+
logger.error(f"ASR inference error: {str(e)}")
|
| 88 |
+
raise HTTPException(status_code=400, detail=f"ASR inference error: {str(e)}")
|
| 89 |
+
except Exception as e:
|
| 90 |
+
logger.error(f"Unknown error diring ASR inference: {str(e)}")
|
| 91 |
+
raise HTTPException(status_code=500, detail=f"Unknown error diring ASR inference: {str(e)}")
|
| 92 |
+
|
| 93 |
+
if self.diarization_pipeline:
|
| 94 |
+
try:
|
| 95 |
+
transcript = diarize(self.diarization_pipeline, file, parameters, asr_outputs)
|
| 96 |
+
except RuntimeError as e:
|
| 97 |
+
logger.error(f"Diarization inference error: {str(e)}")
|
| 98 |
+
raise HTTPException(status_code=400, detail=f"Diarization inference error: {str(e)}")
|
| 99 |
+
except Exception as e:
|
| 100 |
+
logger.error(f"Unknown error during diarization: {str(e)}")
|
| 101 |
+
raise HTTPException(status_code=500, detail=f"Unknown error during diarization: {str(e)}")
|
| 102 |
+
else:
|
| 103 |
+
transcript = []
|
| 104 |
+
|
| 105 |
+
return {
|
| 106 |
+
"speakers": transcript,
|
| 107 |
+
"chunks": asr_outputs["chunks"],
|
| 108 |
+
"text": asr_outputs["text"],
|
| 109 |
+
}
|