new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 26

Geometric-Disentangelment Unlearning

Machine unlearning, the removal of a training subset's influence from a deployed model, is critical for privacy preservation and model reliability, yet gradient ascent on forget samples often harms retained knowledge. Existing approaches face a persistent tradeoff between effective forgetting and preservation on the retain set. While previous methods provide useful heuristics, they often lack a formal analysis on how exactly forgetting updates harm retained knowledge, and whether the side effects can be removed with theoretical guarantees. To explore a theoretically sound and simple solution, we start from the first principle on how performance on the retain set is actually affected: a first-order analysis of the local change of the retain loss under small parameter updates during model training. We start from a crisp equivalence: the retain loss is unchanged to first order iff the update direction is orthogonal to the subspace spanned by retain gradients ("retain-invariant"). This identifies the entangled component as the tangential part of forget update within the retain-gradient subspace, and characterizes disentanglement as orthogonality. Guided by this, we propose the Geometric-disentanglement Unlearning (GU) that decomposes any candidate forget gradient update into tangential and normal components to retain space and executes only the normal component. Under a standard trust-region budget, the projected direction aligned with the raw forget gradient is optimal among all first-order retain-invariant moves, and we also derive the optimal projected direction for joint forget-retain updating objectives. Our method is plug-and-play and can be attached to existing gradient-based unlearning procedures to mitigate side effects. GU achieves consistent improvement on various methods across three benchmarks TOFU, MUSE, and WMDP.

  • 11 authors
·
Nov 21, 2025

A JWST Project on 47 Tucanae: Kinematics, energy equipartition and anisotropy of multiple populations

Recent work with JWST has demonstrated its capability to identify and chemically characterize multiple populations in globular clusters down to the H-burning limit. In this study, we explore the kinematics of multiple populations in the globular cluster 47 Tucanae by combining data from JWST, HST, and Gaia. We analyzed velocity dispersion and anisotropy profiles from the cluster center out to sim10R_h. Our findings indicate that while 1G stars are isotropic, 2G stars are significantly radially anisotropic. These results align with the predictions of simulations of the dynamical evolution of clusters where 2G stars are initially more centrally concentrated than 1G stars. Furthermore, we subdivided the 2G population into two subpopulations: 2G_A and 2G_B, with the latter being more chemically extreme. We compared their dynamical profiles and found no significant differences. For the first time, we measured the degree of energy equipartition among the multiple populations of 47 Tucanae. Overall, within the analyzed radial range (sim2-4R_h), both populations exhibit a low degree of energy equipartition. The most significant differences between 1G and 2G stars are observed in the tangential velocity component, where 2G stars are characterized by a stronger degree of energy equipartition than 1G stars. In the radial component, the behavior of 1G and 2G stars is more variable, with differences largely dependent on radius. Finally, our analysis reveals that the ratio of rotational velocity to velocity dispersion is larger for the 2G population, while 1G stars exhibit higher skewness in their tangential proper motions, providing further evidence of differences in the kinematic properties of the 1G and 2G populations.

  • 19 authors
·
Feb 5, 2025

An SIDM simulation of the merging cluster El Gordo and its tension between the post collision DM density profiles and weak lensing constraints

We review recent findings from a detailed simulation study of the merging cluster El Gordo and present new results inferred from weak lensing data. We found that the observed spatial offsets between the different mass components are well reproduced in merging simulations that include self-interacting dark matter (DM), with an elastic cross-section per unit mass of approximately \sigma_DM/m_X ~ 4 -5 cm^2/gr. Moreover, a relative line-of-sight peculiar velocity on the order of several hundred km/s is found between the two stellar components of the colliding subclusters. These findings strongly suggest the possibility that, in a very energetic cluster collision, DM could possess collisional properties. However, the self-interacting DM merger model presented here is not without difficulties. The values found for \sigma_DM/m_X being in conflict with the current upper bounds on cluster scales. As a solution to this tension we argue that in major cluster mergers the physical modeling of DM interactions, based on the scattering of DM particles, should be considered too simplistic. Additionally, the DM halos of the post-collision clusters have cored density profiles with core radii r_c ~ 300 kpc. Consequently, the associated reduced tangential shear lensing profiles consistently tend to zero at angles \theta <~ 40^{''}. This result is inconsistent with what is deduced from the measured profiles. These profiles exhibit a diverging behavior when \theta --> 0, as predicted by an NFW mass model. We argue that such contradictions cannot be easily reconciled within the DM models presented so far as an alternative to the collisionless paradigm. However, we suggest that this tension can be used as a unique test bed to probe new DM physics.

  • 1 authors
·
Sep 1, 2025

Microscale stress-geometry interactions in an additively manufactured NiTi cardiovascular stent: A synchrotron dual imaging tomography and diffraction study

This study explores cardiovascular stents fabricated using laser powder bed fusion (LPBF); an emerging method to offer patient-specific customisable parts. Here, the shape memory alloy NiTi, in a near equiatomic composition, was investigated to deconvolve the material response from macroscopic component effects. Specifically, stress-geometry interactions were revealed, in-situ, for a minaturised cardiovascular stent subjected to an externally applied cylindrical stress whilst acquiring synchrotron X-ray imaging and diffraction data. The approach enabled the collection of spatially resolved micromechanical deformation data; the formation of stress-induced martensite and R-phase was evident, occurring in locations near junctions between stent ligaments where stress concentrations exist. In the as-fabricated condition, hardness maps were obtained through nanoindentation, demonstrating that the localised deformation and deformation patterning is further controlled by porosity and microstructural heterogeneity. Electron backscatter diffraction (EBSD) supported these observations, showing a finer grain structure near stent junctions with higher associated lattice curvature. These features, combined with stress concentrations when loaded will initiate localised phase transformations. If the stent was subjected to repeated loading, representing in-vivo conditions, these regions would be susceptible to cyclic damage through transformation memory loss, leading to premature component failure. This study highlights the challenges that must be addressed for the post-processing treatment of LABF-processed stents for healthcare-related applications.

  • 11 authors
·
Dec 12, 2023