new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 5

Monadic Context Engineering

The proliferation of Large Language Models (LLMs) has catalyzed a shift towards autonomous agents capable of complex reasoning and tool use. However, current agent architectures are frequently constructed using imperative, ad hoc patterns. This results in brittle systems plagued by difficulties in state management, error handling, and concurrency. This paper introduces Monadic Context Engineering (MCE), a novel architectural paradigm leveraging the algebraic structures of Functors, Applicative Functors, and Monads to provide a formal foundation for agent design. MCE treats agent workflows as computational contexts where cross-cutting concerns, such as state propagation, short-circuiting error handling, and asynchronous execution, are managed intrinsically by the algebraic properties of the abstraction. We demonstrate how Monads enable robust sequential composition, how Applicatives provide a principled structure for parallel execution, and crucially, how Monad Transformers allow for the systematic composition of these capabilities. This layered approach enables developers to construct complex, resilient, and efficient AI agents from simple, independently verifiable components. We further extend this framework to describe Meta-Agents, which leverage MCE for generative orchestration, dynamically creating and managing sub-agent workflows through metaprogramming. Project Page: https://github.com/yifanzhang-pro/monadic-context-engineering.

math-ai math-ai
·
Dec 26, 2025 2

ECtHR-PCR: A Dataset for Precedent Understanding and Prior Case Retrieval in the European Court of Human Rights

In common law jurisdictions, legal practitioners rely on precedents to construct arguments, in line with the doctrine of stare decisis. As the number of cases grow over the years, prior case retrieval (PCR) has garnered significant attention. Besides lacking real-world scale, existing PCR datasets do not simulate a realistic setting, because their queries use complete case documents while only masking references to prior cases. The query is thereby exposed to legal reasoning not yet available when constructing an argument for an undecided case as well as spurious patterns left behind by citation masks, potentially short-circuiting a comprehensive understanding of case facts and legal principles. To address these limitations, we introduce a PCR dataset based on judgements from the European Court of Human Rights (ECtHR), which explicitly separate facts from arguments and exhibit precedential practices, aiding us to develop this PCR dataset to foster systems' comprehensive understanding. We benchmark different lexical and dense retrieval approaches with various negative sampling strategies, adapting them to deal with long text sequences using hierarchical variants. We found that difficulty-based negative sampling strategies were not effective for the PCR task, highlighting the need for investigation into domain-specific difficulty criteria. Furthermore, we observe performance of the dense models degrade with time and calls for further research into temporal adaptation of retrieval models. Additionally, we assess the influence of different views , Halsbury's and Goodhart's, in practice in ECtHR jurisdiction using PCR task.

  • 3 authors
·
Mar 31, 2024