- Rosetta-PL: Propositional Logic as a Benchmark for Large Language Model Reasoning Large Language Models (LLMs) are primarily trained on high-resource natural languages, limiting their effectiveness in low-resource settings and in tasks requiring deep logical reasoning. This research introduces Rosetta-PL, a benchmark designed to evaluate LLMs' logical reasoning and generalization capabilities in a controlled environment. We construct Rosetta-PL by translating a dataset of logical propositions from Lean into a custom logical language, which is then used to fine-tune an LLM (e.g., GPT-4o). Our experiments analyze the impact of the size of the dataset and the translation methodology on the performance of the model. Our results indicate that preserving logical relationships in the translation process significantly boosts precision, with accuracy plateauing beyond roughly 20,000 training samples. These insights provide valuable guidelines for optimizing LLM training in formal reasoning tasks and improving performance in various low-resource language applications. 9 authors · Mar 25
1 Logic-of-Thought: Injecting Logic into Contexts for Full Reasoning in Large Language Models Large Language Models (LLMs) have demonstrated remarkable capabilities across various tasks but their performance in complex logical reasoning tasks remains unsatisfactory. Although some prompting methods, such as Chain-of-Thought, can improve the reasoning ability of LLMs to some extent, they suffer from an unfaithful issue where derived conclusions may not align with the generated reasoning chain. To address this issue, some studies employ the approach of propositional logic to further enhance logical reasoning abilities of LLMs. However, the potential omissions in the extraction of logical expressions in these methods can cause information loss in the logical reasoning process, thereby generating incorrect results. To this end, we propose Logic-of-Thought (LoT) prompting which employs propositional logic to generate expanded logical information from input context, and utilizes the generated logical information as an additional augmentation to the input prompts, thereby enhancing the capability of logical reasoning. The LoT is orthogonal to existing prompting methods and can be seamlessly integrated with them. Extensive experiments demonstrate that LoT boosts the performance of various prompting methods with a striking margin across five logical reasoning tasks. In particular, the LoT enhances Chain-of-Thought's performance on the ReClor dataset by +4.35%; moreover, it improves Chain-of-Thought with Self-Consistency's performance on LogiQA by +5%; additionally, it boosts performance of Tree-of-Thoughts on ProofWriter dataset by +8%. 7 authors · Sep 26, 2024
- Comparing Inferential Strategies of Humans and Large Language Models in Deductive Reasoning Deductive reasoning plays a pivotal role in the formulation of sound and cohesive arguments. It allows individuals to draw conclusions that logically follow, given the truth value of the information provided. Recent progress in the domain of large language models (LLMs) has showcased their capability in executing deductive reasoning tasks. Nonetheless, a significant portion of research primarily assesses the accuracy of LLMs in solving such tasks, often overlooking a deeper analysis of their reasoning behavior. In this study, we draw upon principles from cognitive psychology to examine inferential strategies employed by LLMs, through a detailed evaluation of their responses to propositional logic problems. Our findings indicate that LLMs display reasoning patterns akin to those observed in humans, including strategies like supposition following or chain construction. Moreover, our research demonstrates that the architecture and scale of the model significantly affect its preferred method of reasoning, with more advanced models tending to adopt strategies more frequently than less sophisticated ones. Importantly, we assert that a model's accuracy, that is the correctness of its final conclusion, does not necessarily reflect the validity of its reasoning process. This distinction underscores the necessity for more nuanced evaluation procedures in the field. 2 authors · Feb 20, 2024
- Deciding not to Decide: Sound and Complete Effect Inference in the Presence of Higher-Rank Polymorphism Type-and-effect systems help the programmer to organize data and computational effects in a program. While for traditional type systems expressive variants with sophisticated inference algorithms have been developed and widely used in programming languages, type-and-effect systems did not yet gain widespread adoption. One reason for this is that type-and-effect systems are more complex and the existing inference algorithms make compromises between expressiveness, intuitiveness, and decidability. In this work, we present an effect inference algorithm for a type-and-effect system with subtyping, expressive higher-rank polymorphism, and intuitive set-like semantics of effects. In order to deal with scoping issues of higher-rank polymorphism, we delay solving of effect constraints by transforming them into formulae of propositional logic. We prove soundness and completeness of our algorithm with respect to a declarative type-and-effect system. All the presented results have been formalized in the Rocq proof assistant, and the algorithm has been successfully implemented in a realistic programming language. 3 authors · Oct 23
- Logicbreaks: A Framework for Understanding Subversion of Rule-based Inference We study how to subvert large language models (LLMs) from following prompt-specified rules. We first formalize rule-following as inference in propositional Horn logic, a mathematical system in which rules have the form "if P and Q, then R" for some propositions P, Q, and R. Next, we prove that although small transformers can faithfully follow such rules, maliciously crafted prompts can still mislead both theoretical constructions and models learned from data. Furthermore, we demonstrate that popular attack algorithms on LLMs find adversarial prompts and induce attention patterns that align with our theory. Our novel logic-based framework provides a foundation for studying LLMs in rule-based settings, enabling a formal analysis of tasks like logical reasoning and jailbreak attacks. 5 authors · Jun 21, 2024
- A & B == B & A: Triggering Logical Reasoning Failures in Large Language Models Recent advancements in large language models (LLMs) have propelled Artificial Intelligence (AI) to new heights, enabling breakthroughs in various tasks such as writing assistance, code generation, and machine translation. A significant distinction of advanced LLMs, such as ChatGPT, is their demonstrated ability to "reason." However, evaluating the reasoning ability of LLMs remains a challenge as most existing evaluations focus on their accuracy on the downstream tasks rather than directly assessing their reasoning processes. Efforts have been made to develop benchmarks and metrics to assess reasoning in LLMs, but they suffer from data leakage or limited scope. In this paper, we introduce LogicAsker, an automatic approach that comprehensively evaluates and improves the logical reasoning abilities of LLMs under a set of atomic reasoning skills based on propositional and predicate logic. The results provide insights into LLMs' reasoning abilities and reveal the logical rules the LLMs did not learn well. We evaluate LogicAsker on six widely deployed LLMs, including GPT-3, ChatGPT, GPT-4, Bard, Vicuna, and Guanaco. The results show that test cases from LogicAsker can find logical reasoning failures in different LLMs with a rate of 25\% - 94\%. In addition, the test cases of LogicAsker can be further used to design demonstration examples for in-context learning, which effectively improves the logical reasoning ability of LLMs, e.g., 10\% for GPT-4. As far as we know, our work is the first to create prompts based on testing results to improve LLMs' formal reasoning ability effectively. All the code, data, and results will be released for reproduction and future research. 8 authors · Jan 1, 2024
- Assessing Logical Reasoning Capabilities of Encoder-Only Transformer Models Logical reasoning is central to complex human activities, such as thinking, debating, and planning; it is also a central component of many AI systems as well. In this paper, we investigate the extent to which encoder-only transformer language models (LMs) can reason according to logical rules. We ask whether those LMs can deduce theorems in propositional calculus and first-order logic; if their relative success in these problems reflects general logical capabilities; and which layers contribute the most to the task. First, we show for several encoder-only LMs that they can be trained, to a reasonable degree, to determine logical validity on various datasets. Next, by cross-probing fine-tuned models on these datasets, we show that LMs have difficulty in transferring their putative logical reasoning ability, which suggests that they may have learned dataset-specific features, instead of a general capability. Finally, we conduct a layerwise probing experiment, which shows that the hypothesis classification task is mostly solved through higher layers. 5 authors · Dec 18, 2023