new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 2

Explicit Estimation of Magnitude and Phase Spectra in Parallel for High-Quality Speech Enhancement

Phase information has a significant impact on speech perceptual quality and intelligibility. However, existing speech enhancement methods encounter limitations in explicit phase estimation due to the non-structural nature and wrapping characteristics of the phase, leading to a bottleneck in enhanced speech quality. To overcome the above issue, in this paper, we proposed MP-SENet, a novel Speech Enhancement Network that explicitly enhances Magnitude and Phase spectra in parallel. The proposed MP-SENet comprises a Transformer-embedded encoder-decoder architecture. The encoder aims to encode the input distorted magnitude and phase spectra into time-frequency representations, which are further fed into time-frequency Transformers for alternatively capturing time and frequency dependencies. The decoder comprises a magnitude mask decoder and a phase decoder, directly enhancing magnitude and wrapped phase spectra by incorporating a magnitude masking architecture and a phase parallel estimation architecture, respectively. Multi-level loss functions explicitly defined on the magnitude spectra, wrapped phase spectra, and short-time complex spectra are adopted to jointly train the MP-SENet model. A metric discriminator is further employed to compensate for the incomplete correlation between these losses and human auditory perception. Experimental results demonstrate that our proposed MP-SENet achieves state-of-the-art performance across multiple speech enhancement tasks, including speech denoising, dereverberation, and bandwidth extension. Compared to existing phase-aware speech enhancement methods, it further mitigates the compensation effect between the magnitude and phase by explicit phase estimation, elevating the perceptual quality of enhanced speech.

  • 3 authors
·
Aug 17, 2023

APNet: An All-Frame-Level Neural Vocoder Incorporating Direct Prediction of Amplitude and Phase Spectra

This paper presents a novel neural vocoder named APNet which reconstructs speech waveforms from acoustic features by predicting amplitude and phase spectra directly. The APNet vocoder is composed of an amplitude spectrum predictor (ASP) and a phase spectrum predictor (PSP). The ASP is a residual convolution network which predicts frame-level log amplitude spectra from acoustic features. The PSP also adopts a residual convolution network using acoustic features as input, then passes the output of this network through two parallel linear convolution layers respectively, and finally integrates into a phase calculation formula to estimate frame-level phase spectra. Finally, the outputs of ASP and PSP are combined to reconstruct speech waveforms by inverse short-time Fourier transform (ISTFT). All operations of the ASP and PSP are performed at the frame level. We train the ASP and PSP jointly and define multilevel loss functions based on amplitude mean square error, phase anti-wrapping error, short-time spectral inconsistency error and time domain reconstruction error. Experimental results show that our proposed APNet vocoder achieves an approximately 8x faster inference speed than HiFi-GAN v1 on a CPU due to the all-frame-level operations, while its synthesized speech quality is comparable to HiFi-GAN v1. The synthesized speech quality of the APNet vocoder is also better than that of several equally efficient models. Ablation experiments also confirm that the proposed parallel phase estimation architecture is essential to phase modeling and the proposed loss functions are helpful for improving the synthesized speech quality.

  • 2 authors
·
May 13, 2023

Towards High-Quality and Efficient Speech Bandwidth Extension with Parallel Amplitude and Phase Prediction

Speech bandwidth extension (BWE) refers to widening the frequency bandwidth range of speech signals, enhancing the speech quality towards brighter and fuller. This paper proposes a generative adversarial network (GAN) based BWE model with parallel prediction of Amplitude and Phase spectra, named AP-BWE, which achieves both high-quality and efficient wideband speech waveform generation. The proposed AP-BWE generator is entirely based on convolutional neural networks (CNNs). It features a dual-stream architecture with mutual interaction, where the amplitude stream and the phase stream communicate with each other and respectively extend the high-frequency components from the input narrowband amplitude and phase spectra. To improve the naturalness of the extended speech signals, we employ a multi-period discriminator at the waveform level and design a pair of multi-resolution amplitude and phase discriminators at the spectral level, respectively. Experimental results demonstrate that our proposed AP-BWE achieves state-of-the-art performance in terms of speech quality for BWE tasks targeting sampling rates of both 16 kHz and 48 kHz. In terms of generation efficiency, due to the all-convolutional architecture and all-frame-level operations, the proposed AP-BWE can generate 48 kHz waveform samples 292.3 times faster than real-time on a single RTX 4090 GPU and 18.1 times faster than real-time on a single CPU. Notably, to our knowledge, AP-BWE is the first to achieve the direct extension of the high-frequency phase spectrum, which is beneficial for improving the effectiveness of existing BWE methods.

  • 4 authors
·
Jan 12, 2024

TempoRL: laser pulse temporal shape optimization with Deep Reinforcement Learning

High Power Laser's (HPL) optimal performance is essential for the success of a wide variety of experimental tasks related to light-matter interactions. Traditionally, HPL parameters are optimised in an automated fashion relying on black-box numerical methods. However, these can be demanding in terms of computational resources and usually disregard transient and complex dynamics. Model-free Deep Reinforcement Learning (DRL) offers a promising alternative framework for optimising HPL performance since it allows to tune the control parameters as a function of system states subject to nonlinear temporal dynamics without requiring an explicit dynamics model of those. Furthermore, DRL aims to find an optimal control policy rather than a static parameter configuration, particularly suitable for dynamic processes involving sequential decision-making. This is particularly relevant as laser systems are typically characterised by dynamic rather than static traits. Hence the need for a strategy to choose the control applied based on the current context instead of one single optimal control configuration. This paper investigates the potential of DRL in improving the efficiency and safety of HPL control systems. We apply this technique to optimise the temporal profile of laser pulses in the L1 pump laser hosted at the ELI Beamlines facility. We show how to adapt DRL to the setting of spectral phase control by solely tuning dispersion coefficients of the spectral phase and reaching pulses similar to transform limited with full-width at half-maximum (FWHM) of ca1.6 ps.

  • 5 authors
·
Apr 20, 2023

Synthetic Light Curves and Spectra for the Photospheric Phase of a 3D Stripped-Envelope Supernova Explosion Model

We present synthetic light curves and spectra from three-dimensional (3D) Monte Carlo radiative transfer simulations based on a 3D core-collapse supernova explosion model of an ultra-stripped 3.5,M_{odot} progenitor. Our calculations predict a fast and faint transient with Delta m_{15} sim 1- 2,mag and peak bolometric luminosity between -15.3,mag and -16.4,mag. Due to a large-scale unipolar asymmetry in the distribution of ^{56}Ni, there is a pronounced viewing-angle dependence with about 1,mag difference between the directions of highest and lowest luminosity. The predicted spectra for this rare class of explosions do not yet match any observed counterpart. They are dominated by prominent Mg~II lines, but features from O, C, Si, and Ca are also found. In particular, the O~I line at 7{774} appears as a blended feature together with Mg~II emission. Our model is not only faster and fainter than the observed Ib/c supernova population, but also shows a correlation between higher peak luminosity and larger Delta m_{15} that is not present in observational samples. A possible explanation is that the unusually small ejecta mass of our model accentuates the viewing-angle dependence of the photometry. We suggest that the viewing-angle dependence of the photometry may be used to constrain asymmetries in explosion models of more typical stripped-envelope supernova progenitors in future.

  • 5 authors
·
Oct 28, 2024

SN 2023ixf in the Pinwheel Galaxy M101: From Shock Breakout to the Nebular Phase

We present photometric and spectroscopic observations of SN 2023ixf covering from day one to 442 days after explosion. SN 2023ixf reached a peak V-band absolute magnitude of -18.2 pm 0.07, and light curves show that it is in the fast-decliner (IIL) subclass with a relatively short ``plateau'' phase (fewer than sim 70 days). Early-time spectra of SN 2023ixf exhibit strong, very narrow emission lines from ionized circumstellar matter (CSM), possibly indicating a Type IIn classification. But these flash/shock-ionization emission features faded after the first week and the spectrum evolved in a manner similar to that of typical Type II SNe, unlike the case of most genuine SNe~IIn in which the ejecta interact with CSM for an extended period of time and develop intermediate-width emission lines. We compare observed spectra of SN 2023ixf with various model spectra to understand the physics behind SN 2023ixf. Our nebular spectra (between 200-400 d) match best with the model spectra from a 15 rm M_{odot} progenitor which experienced enhanced mass loss a few years before explosion. A last-stage mass-loss rate of M = 0.01 rm M_{odot} yr^{-1} from the r1w6 model matches best with the early-time spectra, higher than M approx 2.4 times 10^{-3} rm M_{odot} yr^{-1} derived from the ionized H{alpha} luminosity at 1.58 d. We also use SN 2023ixf as a distance indicator and fit the light curves to derive the Hubble constant by adding SN 2023ixf to the existing sample; we obtain H_{0}=73.1^{+3.68}_{-3.50} km s^{-1} Mpc^{-1}, consistent with the results from SNe~Ia and many other independent methods.

  • 42 authors
·
Mar 18, 2025

\texttt{simple-idealized-1d-nlse}: Pseudo-Spectral Solver for the 1D Nonlinear Schrödinger Equation

We present an open-source Python implementation of an idealized high-order pseudo-spectral solver for the one-dimensional nonlinear Schr\"odinger equation (NLSE). The solver combines Fourier spectral spatial discretization with an adaptive eighth-order Dormand-Prince time integration scheme to achieve machine-precision conservation of mass and near-perfect preservation of momentum and energy for smooth solutions. The implementation accurately reproduces fundamental NLSE phenomena including soliton collisions with analytically predicted phase shifts, Akhmediev breather dynamics, and the development of modulation instability from noisy initial conditions. Four canonical test cases validate the numerical scheme: single soliton propagation, two-soliton elastic collision, breather evolution, and noise-seeded modulation instability. The solver employs a 2/3 dealiasing rule with exponential filtering to prevent aliasing errors from the cubic nonlinearity. Statistical analysis using Shannon, R\'enyi, and Tsallis entropies quantifies the spatio-temporal complexity of solutions, while phase space representations reveal the underlying coherence structure. The implementation prioritizes code transparency and educational accessibility over computational performance, providing a valuable pedagogical tool for exploring nonlinear wave dynamics. Complete source code, documentation, and example configurations are freely available, enabling reproducible computational experiments across diverse physical contexts where the NLSE governs wave evolution, including nonlinear optics, Bose-Einstein condensates, and ocean surface waves.

  • 5 authors
·
Sep 6, 2025

XRISM Observations of Cassiopeia A: Overview, Atomic Data, and Spectral Models

Cassiopeia A (Cas A) is the youngest known core-collapse supernova remnant (SNR) in the Galaxy and is perhaps the best-studied SNR in X-rays. Cas A has a line-rich spectrum dominated by thermal emission and given its high flux, it is an appealing target for high-resolution X-ray spectroscopy. Cas A was observed at two different locations during the Performance Verification phase of the XRISM mission, one location in the southeastern part (SE) of the remnant and one in the northwestern part (NW). This paper serves as an overview of these observations and discusses some of the issues relevant for the analysis of the data. We present maps of the so-called ``spatial-spectral mixing'' effect due to the fact that the XRISM point-spread function is larger than a pixel in the Resolve calorimeter array. We analyze spectra from two bright, on-axis regions such that the effects of spatial-spectral mixing are minimized. We find that it is critical to include redshifts/blueshifts and broadening of the emission lines in the two thermal components to achieve a reasonable fit given the high spectral resolution of the Resolve calorimeter. We fit the spectra with two versions of the AtomDB atomic database (3.0.9 and 3.1.0) and two versions of the SPEX (3.08.00 and 3.08.01*) spectral fitting software. Overall we find good agreement between AtomDB 3.1.0 and SPEX 3.08.01* for the spectral models considered in this paper. The most significant difference we found between AtomDB 3.0.9 and 3.1.0 and between AtomDB 3.1.0 and SPEX 3.08.01* is the Ni abundance, with the new atomic data favoring a considerably lower (up to a factor of 3) Ni abundance. Both regions exhibit significantly enhanced abundances compared to Solar values indicating that supernova ejecta dominate the emission in these regions. We find that the abundance ratios of Ti/Fe, Mn/Fe, \& Ni/Fe are significantly lower in the NW than the SE.

  • 17 authors
·
Aug 1, 2025

Signatures of the Shock Interaction as an Additional Power Source in the Nebular Spectra of SN 2023ixf

Red supergiants may lose significant mass through steady winds and episodic eruptions in the final 100-1000 years before the core collapses, shaping their circumstellar environment. Interaction between supernova (SN) ejecta and distant circumstellar material (CSM) can generate shocks, which can energize the ejecta and serve as a key power source during the nebular phase of the SN. In the present work, we investigate the nebular spectrum of SN 2023ixf, observed one year post-explosion (at +363 d) with the recently commissioned WEAVE instrument on the 4.2m William Herschel Telescope. This marks the first supernova spectrum captured with WEAVE. In this spectrum, Halpha exhibits a peculiar evolution, flanked by blueward and redward broad components centred at simpm 5650,km,s^{-1} from the rest velocity of Halpha, which are seen for only a few SNe to date. These features indicate energy deposition from shocks generated by the interaction of ejecta with a CSM expelled nearly 350 - 640 years pre-explosion. Comparisons of the +363 d spectrum with model spectra from the literature, that include varying shock powers, suggest a shock power of at least sim 5 times 10 ^{40},erg,s^{-1} at this epoch. Additionally, analysis of the [O I] doublet, along with other prominent emission lines, provides evidence for clumpiness, dust formation, and asymmetry within the ejecta and/or the surrounding CSM. These emission lines also helped to constrain the oxygen mass (approx0.19^{scriptscriptstyle +0.08}_{scriptscriptstyle -0.04} M_odot), He-core mass (<3 M_odot) and the zero-age main sequence mass (lesssim 12 M_odot) of the progenitor of SN 2023ixf. The comparison with other Type II SNe highlights SN 2023ixf's unique shock interaction signatures and evidence of dust formation, setting it apart in terms of evolution and dynamics.

  • 5 authors
·
Dec 4, 2024

The first measurements of carbon isotopic ratios in post-RGB stars: SZ Mon and DF Cyg. E-iSpec: A spectral analysis tool to derive elemental abundances and isotopic ratios for evolved stars

Dusty post-red giant branch (post-RGB) stars are low- and intermediate-mass stars where the RGB evolution was prematurely terminated by a poorly understood binary interaction. These binary stars are considered to be low-luminosity analogues of post-asymptotic giant branch (post-AGB) binary stars. In this study, we investigated the chemical composition of two dusty post-RGB binary stars, SZ Mon and DF Cyg, using multi-wavelength spectroscopic data from HERMES/Mercator (optical) and the APOGEE survey (near-infrared). Owing to challenges posed by existing spectral analysis tools for the study of evolved stars with complex atmospheres, we developed E-iSpec: a dedicated spectral analysis tool for evolved stars, to consistently determine atmospheric parameters, elemental abundances, and carbon isotopic ratios. Our abundance analysis revealed that observed depletion patterns and estimated depletion efficiencies resemble those found in post-AGB binary stars. However, the onset of chemical depletion in post-RGB targets occurs at higher condensation temperatures (T_{rm turn-off, post-RGB}approx1400 K), than in most post-AGB stars (T_{rm turn-off, post-AGB}approx1100 K). Additionally, our study resulted in the first estimates of carbon isotopic ratios for post-RGB stars (^{12}C/^{13}C_{rm SZ Mon}=8pm4, ^{12}C/^{13}C_{rm DF Cyg}=12pm3). We found that the observationally derived CNO abundances and the carbon isotopic ratios of our post-RGB binary targets are in good agreement with theoretical predictions from the ATON single star evolutionary models involving first dredge-up and moderately-deep extra mixing. This agreement emphasises that in post-RGB binary targets, the observed CNO abundances reflect the chemical composition expected from single star nucleosynthesis (i.e., convective and non-convective mixing processes) occurring during the RGB phase before it is terminated.

  • 7 authors
·
Mar 14, 2024

Frequency Prior Guided Matching: A Data Augmentation Approach for Generalizable Semi-Supervised Polyp Segmentation

Automated polyp segmentation is essential for early diagnosis of colorectal cancer, yet developing robust models remains challenging due to limited annotated data and significant performance degradation under domain shift. Although semi-supervised learning (SSL) reduces annotation requirements, existing methods rely on generic augmentations that ignore polyp-specific structural properties, resulting in poor generalization to new imaging centers and devices. To address this, we introduce Frequency Prior Guided Matching (FPGM), a novel augmentation framework built on a key discovery: polyp edges exhibit a remarkably consistent frequency signature across diverse datasets. FPGM leverages this intrinsic regularity in a two-stage process. It first learns a domain-invariant frequency prior from the edge regions of labeled polyps. Then, it performs principled spectral perturbations on unlabeled images, aligning their amplitude spectra with this learned prior while preserving phase information to maintain structural integrity. This targeted alignment normalizes domain-specific textural variations, thereby compelling the model to learn the underlying, generalizable anatomical structure. Validated on six public datasets, FPGM establishes a new state-of-the-art against ten competing methods. It demonstrates exceptional zero-shot generalization capabilities, achieving over 10% absolute gain in Dice score in data-scarce scenarios. By significantly enhancing cross-domain robustness, FPGM presents a powerful solution for clinically deployable polyp segmentation under limited supervision.

  • 3 authors
·
Jul 30, 2025

The nature of an imaginary quasi-periodic oscillation in the soft-to-hard transition of MAXI J1820+070

A recent study shows that if the power spectra (PS) of accreting compact objects consist of a combination of Lorentzian functions that are coherent in different energy bands but incoherent with each other, the same is true for the Real and Imaginary parts of the cross spectrum (CS). Using this idea, we discovered imaginary quasi-periodic oscillations (QPOs) in NICER observations of the black hole candidate MAXI J1820+070. The imaginary QPOs appear as narrow features with a small Real and large Imaginary part in the CS but are not significantly detected in the PS when they overlap in frequency with other variability components. The coherence function drops and the phase lags increase abruptly at the frequency of the imaginary QPO. We show that the multi-Lorentzian model that fits the PS and CS of the source in two energy bands correctly reproduces the lags and the coherence, and that the narrow drop of the coherence is caused by the interaction of the imaginary QPO with other variability components. The imaginary QPO appears only in the decay of the outburst, during the transition from the high-soft to the low-hard state of MAXI J1820+070, and its frequency decreases from approximately 5 Hz to around 1 Hz as the source spectrum hardens. We also analysed the earlier observations of the transition, where no narrow features were seen, and we identified a QPO in the PS that appears to evolve into the imaginary QPO as the source hardens. As for the type-B and C QPOs in this source, the rms spectrum of the imaginary QPO increases with energy. The lags of the imaginary QPO are similar to those of the type-B and C QPOs above 2 keV but differ from the lags of those other QPOs below that energy. While the properties of this imaginary QPO resemble those of type-C QPOs, we cannot rule out that it is a new type of QPO.

  • 5 authors
·
Feb 17, 2025

PhaseNet: A Deep-Neural-Network-Based Seismic Arrival Time Picking Method

As the number of seismic sensors grows, it is becoming increasingly difficult for analysts to pick seismic phases manually and comprehensively, yet such efforts are fundamental to earthquake monitoring. Despite years of improvements in automatic phase picking, it is difficult to match the performance of experienced analysts. A more subtle issue is that different seismic analysts may pick phases differently, which can introduce bias into earthquake locations. We present a deep-neural-network-based arrival-time picking method called "PhaseNet" that picks the arrival times of both P and S waves. Deep neural networks have recently made rapid progress in feature learning, and with sufficient training, have achieved super-human performance in many applications. PhaseNet uses three-component seismic waveforms as input and generates probability distributions of P arrivals, S arrivals, and noise as output. We engineer PhaseNet such that peaks in probability provide accurate arrival times for both P and S waves, and have the potential to increase the number of S-wave observations dramatically over what is currently available. This will enable both improved locations and improved shear wave velocity models. PhaseNet is trained on the prodigious available data set provided by analyst-labeled P and S arrival times from the Northern California Earthquake Data Center. The dataset we use contains more than seven million waveform samples extracted from over thirty years of earthquake recordings. We demonstrate that PhaseNet achieves much higher picking accuracy and recall rate than existing methods.

  • 2 authors
·
Mar 8, 2018

Model-agnostic search for the quasinormal modes of gravitational wave echoes

Post-merger gravitational wave echoes provide a unique opportunity to probe the near-horizon structure of astrophysical black holes, that may be modified due to non-perturbative quantum gravity phenomena. However, since the waveform is subject to large theoretical uncertainties, it is necessary to develop model-agnostic search methods for detecting echoes from observational data. A promising strategy is to identify the characteristic quasinormal modes (QNMs) associated with echoes, {\it in frequency space}, which complements existing searches of quasiperiodic pulses in time. In this study, we build upon our previous work targeting these modes by incorporating relative phase information to optimize the Bayesian search algorithm. Using a new phase-marginalized likelihood, the performance can be significantly improved for well-resolved QNMs. This enables an efficient model-agnostic search for QNMs of different shapes by using a simple search template. To demonstrate the robustness of the search algorithm, we construct four complementary benchmarks for the echo waveform that span a diverse range of different theoretical possibilities for the near-horizon structure. We then validate our Bayesian search algorithms by injecting the benchmark models into different realizations of Gaussian noise. Using two types of phase-marginalized likelihoods, we find that the search algorithm can efficiently detect the corresponding QNMs. Therefore, our search strategy provides a concrete Bayesian and model-agnostic approach to "quantum black hole seismology".

  • 4 authors
·
Aug 2, 2023

A Comprehensive Perturbative Formalism for Phase Mixing in Perturbed Disks. II. Phase Spirals in an Inhomogeneous Disk Galaxy with a Non-responsive Dark Matter Halo

We develop a linear perturbative formalism to compute the response of an inhomogeneous stellar disk embedded in a non-responsive dark matter halo to perturbations like bars, spiral arms and satellite galaxy encounters. Without self-gravity to reinforce it, the response of a Fourier mode phase mixes away due to an intrinsic spread in the vertical (Omega_z), radial (Omega_r) and azimuthal (Omega_phi) frequencies, giving rise to local phase-space spirals. Collisional diffusion due to scattering of stars by structures like giant molecular clouds causes super-exponential damping of the phase-spiral amplitude. The z-v_z phase-spiral is 1-armed (2-armed) for vertically anti-symmetric (symmetric) bending (breathing) modes. Only transient perturbations with timescales (tau_{P}) comparable to the vertical oscillation period (tau_z sim 1/Omega_z) trigger z-v_z phase-spirals. Each (n,l,m) mode of the response to impulsive (tau_{P}<tau=1/(nOmega_z+lOmega_r+mOmega_phi)) perturbations is power law (sim tau_{P}/tau) suppressed, but that to adiabatic (tau_{P}>tau) perturbations is exponentially weak (sim left[-left(tau_{mathrm{P}/tauright)^alpharight]}) except resonant (tauto infty) modes. Slower (tau_{P}>tau_z) perturbations, e.g., distant encounters with satellite galaxies, induce stronger bending modes. If the Gaia phase-spiral was triggered by a satellite, Sagittarius is the leading contender as it dominates the Solar neighborhood response of the Milky Way disk to satellite encounters. However, survival against collisional damping necessitates that the impact occurred within sim 0.6-0.7 Gyr ago. We discuss how the detailed galactic potential dictates the phase-spiral shape: phase mixing occurs slower and phase-spirals are less wound in the outer disk and in presence of an ambient halo.

  • 3 authors
·
Feb 28, 2023

Characterising the Atmosphere of 55 Cancri e: 1D Forward Model Grid for Current and Future JWST Observations

Recent JWST observations with NIRCam and MIRI of the ultra-short-period super-Earth 55 Cancri e indicate a possible volatile atmosphere surrounding the planet. Previous analysis of the NIRCam spectra suggested potential absorption features from CO2 or CO and significant sub-weekly variability. The MIRI low-resolution spectrum does not contain substantial features but was found to be consistent with effective heat redistribution models. In this work, we computed a grid of over 25000 self-consistent 1D forward models incorporating H-N-O-C-S-P-Si-Ti equilibrium chemistry and assessed plausible atmospheric compositions based on the current JWST data. Despite exhaustive analysis, the composition and properties of the atmosphere remain elusive. While our results statistically favour a global, hydrogen-free, nitrogen-dominated atmosphere enriched in PO and CO2, various alternative compositions, including H2O-,CO-, PH3-, or Si-bearing remain viable explanations. Unconstrained heat redistribution efficiency and absolute NIRCam flux are among the largest sources of uncertainty in our analysis. We also find that the heat redistribution factor and surface pressure are highly degenerate with atmospheric composition, and that these parameters cannot be independently constrained using current JWST observations. Furthermore, we show that the observed variability may arise from dynamic interactions between the atmosphere and an underlying magma ocean, driving rapid shifts in atmospheric chemistry and thermal emission. Our results highlight the importance of using self-consistent forward models when analysing novel JWST spectra with limited signal-to-noise ratios -- such as those of 55 Cancri e -- as it allows for a more comprehensive evaluation of potential atmospheric scenarios while also being less sensitive to subtle spectral differences than retrievals...

  • 12 authors
·
Mar 20, 2025

Probing X-ray Timing and Spectral Variability in the Blazar PKS 2155-304 Over a Decade of XMM-Newton Observations

Blazars, a class of active galactic nuclei (AGN) powered by supermassive black holes, are known for their remarkable variability across multiple timescales and wavelengths. With advancements in both ground- and space-based telescopes, our understanding of AGN central engines has significantly improved. However, the mechanisms driving this variability remain elusive, and continue to fascinate both theorists and observers alike. The primary objective of this study is to constrain the X-ray variability properties of the TeV blazar PKS 2155-304. We conduct a comprehensive X-ray spectral and timing analysis, focusing on both long-term and intra-day variability. This analysis uses data from 22 epochs of XMM-Newton EPIC-pn observations, collected over 15 years (2000-2014). To investigate the variability of the source, we applied both timing and spectral analyses. For the timing analysis, we estimated fractional variability, variability amplitude, minimum variability timescales, flux distribution, and power spectral density (PSD). In the spectral analysis, we fitted the X-ray spectra using power-law, log-parabola, and broken power-law (BPL) models to determine the best-fitting parameters. Additionally, we studied the hardness ratio (HR). We observed moderate intra-day variability in most of the light curves. Seven out of the twenty-two observations showed a clear bimodal flux distribution, indicating the presence of two distinct flux states. Our analysis revealed a variable power-law PSD slope. Most HR plots did not show significant variation with flux, except for one observation (OBSID 0124930501), where HR increased with flux (Count/s). The fitted X-ray spectra favored the BPL model for the majority of observations. The findings of this work shed light on the intraday variability of blazars, providing insights into the non-thermal jet processes that drive the observed flux variations.

  • 8 authors
·
Oct 2, 2024

HoloBeam: Learning Optimal Beamforming in Far-Field Holographic Metasurface Transceivers

Holographic Metasurface Transceivers (HMTs) are emerging as cost-effective substitutes to large antenna arrays for beamforming in Millimeter and TeraHertz wave communication. However, to achieve desired channel gains through beamforming in HMT, phase-shifts of a large number of elements need to be appropriately set, which is challenging. Also, these optimal phase-shifts depend on the location of the receivers, which could be unknown. In this work, we develop a learning algorithm using a {\it fixed-budget multi-armed bandit framework} to beamform and maximize received signal strength at the receiver for far-field regions. Our algorithm, named \Algo exploits the parametric form of channel gains of the beams, which can be expressed in terms of two {\it phase-shifting parameters}. Even after parameterization, the problem is still challenging as phase-shifting parameters take continuous values. To overcome this, {\it\HB} works with the discrete values of phase-shifting parameters and exploits their unimodal relations with channel gains to learn the optimal values faster. We upper bound the probability of {\it\HB} incorrectly identifying the (discrete) optimal phase-shift parameters in terms of the number of pilots used in learning. We show that this probability decays exponentially with the number of pilot signals. We demonstrate that {\it\HB} outperforms state-of-the-art algorithms through extensive simulations.

  • 3 authors
·
Dec 29, 2023

Protosolar D-to-H abundance and one part-per-billion PH_{3} in the coldest brown dwarf

The coldest Y spectral type brown dwarfs are similar in mass and temperature to cool and warm (sim200 -- 400 K) giant exoplanets. We can therefore use their atmospheres as proxies for planetary atmospheres, testing our understanding of physics and chemistry for these complex, cool worlds. At these cold temperatures, their atmospheres are cold enough for water clouds to form, and chemical timescales increase, increasing the likelihood of disequilibrium chemistry compared to warmer classes of planets. JWST observations are revolutionizing the characterization of these worlds with high signal-to-noise, moderate resolution near- and mid-infrared spectra. The spectra have been used to measure the abundances of prominent species like water, methane, and ammonia; species that trace chemical reactions like carbon monoxide; and even isotopologues of carbon monoxide and ammonia. Here, we present atmospheric retrieval results using both published fixed-slit (GTO program 1230) and new averaged time series observations (GO program 2327) of the coldest known Y dwarf, WISE 0855-0714 (using NIRSpec G395M spectra), which has an effective temperature of sim 264 K. We present a detection of deuterium in an atmosphere outside of the solar system via a relative measurement of deuterated methane (CH_{3}D) and standard methane. From this, we infer the D/H ratio of a substellar object outside the solar system for the first time. We also present a well-constrained part-per-billion abundance of phosphine (PH_{3}). We discuss our interpretation of these results and the implications for brown dwarf and giant exoplanet formation and evolution.

  • 27 authors
·
Nov 21, 2024

Estimation of Classical Cepheid's Physical Parameters from NIR Light Curves

Recent space-borne and ground-based observations provide photometric measurements as time series. The effect of interstellar dust extinction in the near-infrared range is only 10% of that measured in the V band. However, the sensitivity of the light curve shape to the physical parameters in the near-infrared is much lower. So, interpreting these types of data sets requires new approaches like the different large-scale surveys, which create similar problems with big data. Using a selected data set, we provide a method for applying routines implemented in R to extract most information of measurements to determine physical parameters, which can also be used in automatic classification schemes and pipeline processing. We made a multivariate classification of 131 Cepheid light curves (LC) in J, H, and K colors, where all the LCs were represented in 20D parameter space in these colors separately. Performing a Principal Component Analysis (PCA), we got an orthogonal coordinate system and squared Euclidean distances between LCs, with 6 significant eigenvalues, reducing the 20-dimension to 6. We also estimated the optimal number of partitions of similar objects and found it to be equal to 7 in each color; their dependence on the period, absolute magnitude, amplitude, and metallicity are also discussed. We computed the Spearman rank correlations, showing that periods and absolute magnitudes correlate with the first three PCs significantly. The first two PC are also found to have a relationship with the amplitude, but the metallicity effects are only marginal. The method shown can be generalized and implemented in unsupervised classification schemes and analysis of mixed and biased samples. The analysis of our Classical Cepheid near-infrared LC sample showed that the J, H, K curves are insufficient for determination of stellar metallicity, with mass being the key factor shaping them.

  • 2 authors
·
Dec 9, 2024

Peakbagging the K2 KEYSTONE sample with PBjam: characterising the individual mode frequencies in solar-like oscillators

The pattern of individual mode frequencies in solar-like oscillators provides valuable insight into their properties and interior structures. The identification and characterisation of these modes requires high signal-to-noise and frequency resolution. The KEYSTONE project unlocks the asteroseismic potential of the K2 mission by providing individually reduced, high-quality time series data, global asteroseismic parameters, and spectroscopic analysis for 173 solar-like oscillators. In this work, we build on the KEYSTONE project and present the first analysis of the pattern of individual modes in the oscillation spectra for the K2 KEYSTONE stars. We perform a robust identification and characterisation of the modes through peakbagging methods in the open-source analysis tool PBjam. We present over 6000 mode frequencies, widths, and heights for 168 stars in the sample, covering the HR diagram from FGK dwarfs to sub-giants and the lower red giant branch, providing a significant increase in the number of individual mode frequency detections for main sequence and sub-giant oscillators. This study also presents sample-wide trends of oscillation patterns as a function of the fundamental stellar properties, and improves the precision of the global asteroseismic parameters. These measurements are part of the legacy of the K2 mission, and can be used to perform detailed modelling to improve the precision of fundamental properties of these stars. The results of this analysis provides evidence for the validity of using PBjam to identify and characterise the modes resulting from the observations of the future PLATO mission.

  • 8 authors
·
Oct 24, 2025

Understanding of the properties of neural network approaches for transient light curve approximations

Modern-day time-domain photometric surveys collect a lot of observations of various astronomical objects and the coming era of large-scale surveys will provide even more information on their properties. Spectroscopic follow-ups are especially crucial for transients such as supernovae and most of these objects have not been subject to such studies. }{Flux time series are actively used as an affordable alternative for photometric classification and characterization, for instance, peak identifications and luminosity decline estimations. However, the collected time series are multidimensional and irregularly sampled, while also containing outliers and without any well-defined systematic uncertainties. This paper presents a search for the best-performing methods to approximate the observed light curves over time and wavelength for the purpose of generating time series with regular time steps in each passband.}{We examined several light curve approximation methods based on neural networks such as multilayer perceptrons, Bayesian neural networks, and normalizing flows to approximate observations of a single light curve. Test datasets include simulated PLAsTiCC and real Zwicky Transient Facility Bright Transient Survey light curves of transients.}{The tests demonstrate that even just a few observations are enough to fit the networks and improve the quality of approximation, compared to state-of-the-art models. The methods described in this work have a low computational complexity and are significantly faster than Gaussian processes. Additionally, we analyzed the performance of the approximation techniques from the perspective of further peak identification and transients classification. The study results have been released in an open and user-friendly Fulu Python library available on GitHub for the scientific community.

  • 7 authors
·
Sep 15, 2022

Tides on Lava Worlds: Application to Close-in Exoplanets and the Early Earth-Moon System

Understanding the physics of planetary magma oceans has been the subject of growing efforts, in light of the increasing abundance of Solar system samples and extrasolar surveys. A rocky planet harboring such an ocean is likely to interact tidally with its host star, planetary companions, or satellites. To date, however, models of the tidal response and heat generation of magma oceans have been restricted to the framework of weakly viscous solids, ignoring the dynamical fluid behavior of the ocean beyond a critical melt fraction. Here we provide a handy analytical model that accommodates this phase transition, allowing for a physical estimation of the tidal response of lava worlds. We apply the model in two settings: The tidal history of the early Earth-Moon system in the aftermath of the giant impact; and the tidal interplay between short-period exoplanets and their host stars. For the former, we show that the fluid behavior of the Earth's molten surface drives efficient early Lunar recession to {sim} 25 Earth radii within 10^4{-} 10^5 years, in contrast with earlier predictions. For close-in exoplanets, we report on how their molten surfaces significantly change their spin-orbit dynamics, allowing them to evade spin-orbit resonances and accelerating their track towards tidal synchronization from a Gyr to Myr timescale. Moreover, we re-evaluate the energy budgets of detected close-in exoplanets, highlighting how the surface thermodynamics of these planets are likely controlled by enhanced, fluid-driven tidal heating, rather than vigorous insolation, and how this regime change substantially alters predictions for their surface temperatures.

  • 5 authors
·
Dec 10, 2024

Indirect measurement of atomic magneto-optical rotation via Hilbert transform

The Kramers-Kronig relations are a pivotal foundation of linear optics and atomic physics, embedding a physical connection between the real and imaginary components of any causal response function. A mathematically equivalent, but simpler, approach instead utilises the Hilbert transform. In a previous study, the Hilbert transform was applied to absorption spectra in order to infer the sole refractive index of an atomic medium in the absence of an external magnetic field. The presence of a magnetic field causes the medium to become birefringent and dichroic, and therefore it is instead characterised by two refractive indices. In this study, we apply the same Hilbert transform technique to independently measure both refractive indices of a birefringent atomic medium, leading to an indirect measurement of atomic magneto-optical rotation. Key to this measurement is the insight that inputting specific light polarisations into an atomic medium induces absorption associated with only one of the refractive indices. We show this is true in two configurations, commonly referred to in literature as the Faraday and Voigt geometries, which differ by the magnetic field orientation with respect to the light wavevector. For both cases, we measure the two refractive indices independently for a Rb thermal vapour in a 0.6 T magnetic field, finding excellent agreement with theory. This study further emphasises the application of the Hilbert transform to the field of quantum and atomic optics in the linear regime.

  • 4 authors
·
Mar 1, 2024

Promise and Peril: Stellar Contamination and Strict Limits on the Atmosphere Composition of TRAPPIST-1c from JWST NIRISS Transmission Spectra

Attempts to probe the atmospheres of rocky planets around M dwarfs present both promise and peril. While their favorable planet-to-star radius ratios enable searches for even thin secondary atmospheres, their high activity levels and high-energy outputs threaten atmosphere survival. Here, we present the 0.6--2.85\,mum transmission spectrum of the 1.1\,rm R_oplus, sim340\,K rocky planet TRAPPIST-1\,c obtained over two JWST NIRISS/SOSS transit observations. Each of the two spectra displays 100--500\,ppm signatures of stellar contamination. Despite being separated by 367\,days, the retrieved spot and faculae properties are consistent between the two visits, resulting in nearly identical transmission spectra. Jointly retrieving for stellar contamination and a planetary atmosphere reveals that our spectrum can rule out hydrogen-dominated, lesssim300times solar metallicity atmospheres with effective surface pressures down to 10\,mbar at the 3-sigma level. For high-mean molecular weight atmospheres, where O_2 or N_2 is the background gas, our spectrum disfavors partial pressures of more than sim10\,mbar for H_2O, CO, NH_3 and CH_4 at the 2-sigma level. Similarly, under the assumption of a 100\% H_2O, NH_3, CO, or CH_4 atmosphere, our spectrum disfavors thick, >1\,bar atmospheres at the 2-sigma level. These non-detections of spectral features are in line with predictions that even heavier, CO_2-rich, atmospheres would be efficiently lost on TRAPPIST-1\,c given the cumulative high-energy irradiation experienced by the planet. Our results further stress the importance of robustly accounting for stellar contamination when analyzing JWST observations of exo-Earths around M dwarfs, as well as the need for high-fidelity stellar models to search for the potential signals of thin secondary atmospheres.

  • 12 authors
·
Sep 28, 2024

Gravitational waves in massive gravity: Waveforms generated by a particle plunging into a black hole and the excitation of quasinormal modes and quasibound states

With the aim of testing massive gravity in the context of black hole physics, we investigate the gravitational radiation emitted by a massive particle plunging into a Schwarzschild black hole from slightly below the innermost stable circular orbit. To do so, we first construct the quasinormal and quasibound resonance spectra of the spin-2 massive field for odd and even parity. Then, we compute the waveforms produced by the plunging particle and study their spectral content. This allows us to highlight and interpret important phenomena in the plunge regime, including (i) the excitation of quasibound states, with particular emphasis on the amplification and slow decay of the post-ringdown phase of the even-parity dipolar mode due to harmonic resonance; (ii) during the adiabatic phase, the waveform emitted by the plunging particle is very well described by the waveform emitted by the particle living on the innermost stable circular orbit, and (iii) the regularized waveforms and their unregularized counterparts constructed from the quasinormal mode spectrum are in excellent agreement. Finally, we construct, for arbitrary directions of observation and, in particular, outside the orbital plane of the plunging particle, the regularized multipolar waveforms, i.e., the waveforms constructed by summing over partial waveforms.

  • 1 authors
·
Nov 25, 2024

SPRMamba: Surgical Phase Recognition for Endoscopic Submucosal Dissection with Mamba

Endoscopic Submucosal Dissection (ESD) is a minimally invasive procedure initially developed for early gastric cancer treatment and has expanded to address diverse gastrointestinal lesions. While computer-assisted surgery (CAS) systems enhance ESD precision and safety, their efficacy hinges on accurate real-time surgical phase recognition, a task complicated by ESD's inherent complexity, including heterogeneous lesion characteristics and dynamic tissue interactions. Existing video-based phase recognition algorithms, constrained by inefficient temporal context modeling, exhibit limited performance in capturing fine-grained phase transitions and long-range dependencies. To overcome these limitations, we propose SPRMamba, a novel framework integrating a Mamba-based architecture with a Scaled Residual TranMamba (SRTM) block to synergize long-term temporal modeling and localized detail extraction. SPRMamba further introduces the Hierarchical Sampling Strategy to optimize computational efficiency, enabling real-time processing critical for clinical deployment. Evaluated on the ESD385 dataset and the cholecystectomy benchmark Cholec80, SPRMamba achieves state-of-the-art performance (87.64% accuracy on ESD385, +1.0% over prior methods), demonstrating robust generalizability across surgical workflows. This advancement bridges the gap between computational efficiency and temporal sensitivity, offering a transformative tool for intraoperative guidance and skill assessment in ESD surgery. The code is accessible at https://github.com/Zxnyyyyy/SPRMamba.

  • 8 authors
·
Sep 18, 2024

Quasi-periodic pulsations in extreme-ultraviolet brightenings

Context. Extreme-ultraviolet (EUV) observations have revealed small-scale transient brightenings that may share common physical mechanisms with larger-scale solar flares. A notable feature of solar and stellar flares is the presence of quasi-periodic pulsations (QPPs), which are considered a common and potentially intrinsic characteristic. Aims. We investigate the properties of QPPs detected in EUV brightenings, which are considered small-scale flares, and compare their statistical properties with those observed in solar and stellar flares. Methods. We extracted integrated light curves of 22,623 EUV brightenings in two quiet Sun regions observed by the Solar Orbiter/Extreme Ultraviolet Imager and identified QPPs in their light curves using Fourier analysis. Results. Approximately 2.7 % of the EUV brightenings exhibited stationary QPPs. The QPP occurrence rate increased with the surface area, lifetime, and peak brightness of the EUV brightenings. The detected QPP periods ranged from approximately 15 to 260 seconds, which is comparable to the periods observed in solar and stellar flares. Consistent with observations of QPPs in solar and stellar flares, no correlation was found between the QPP period and peak brightness. However, unlike the trend observed in solar flares, no correlation was found between the QPP period and lifetime/length scale. Conclusions. The presence of QPPs in EUV brightenings supports the interpretation that these events may be small-scale manifestations of flares, and the absence of period scaling with loop length further suggests that standing waves may not be the primary driver of QPPs in these events.

  • 8 authors
·
Apr 21, 2025

Evolution of the Accretion Disk and Corona During the Outburst of the Neutron Star Transient MAXI J1807+132

Low-mass X-ray binaries with a neutron star as the primary object show a complex array of phenomenology during outbursts. The observed variability in X-ray emission primarily arises from changes in the innermost regions of the accretion disk, neutron star surface, and corona. In this work, we present the results of a comprehensive X-ray spectral and timing analysis of the neutron star transient MAXI J1807+132 during its 2023 outburst using data from the NICER observatory. The outburst is marked by a very rapid rise in the count rate by about a factor of 20 in a day. The source undergoes full state transitions and displays hysteresis effect in the hardness and rms intensity diagrams. Spectral analysis with a three-component model is consistent with disk truncation during the hard states and reaching the last stable orbit during the intermediate and soft states. We discuss the different values of the last stable radius in the context of possible distance of the source and magnetic field strength. The characteristic frequencies throughout the hard and intermediate states are found to be strongly correlated with the inner radius of the disk. Together with the spectral and fast variability properties, we attempt to trace the evolution of the size of the corona along the outburst. Following the main outburst, the source undergoes a high amplitude reflare wherein it shows a complex behavior with relatively high variability (10 %), but low hardness.

  • 7 authors
·
Dec 11, 2024

Frequency-Aware Deepfake Detection: Improving Generalizability through Frequency Space Learning

This research addresses the challenge of developing a universal deepfake detector that can effectively identify unseen deepfake images despite limited training data. Existing frequency-based paradigms have relied on frequency-level artifacts introduced during the up-sampling in GAN pipelines to detect forgeries. However, the rapid advancements in synthesis technology have led to specific artifacts for each generation model. Consequently, these detectors have exhibited a lack of proficiency in learning the frequency domain and tend to overfit to the artifacts present in the training data, leading to suboptimal performance on unseen sources. To address this issue, we introduce a novel frequency-aware approach called FreqNet, centered around frequency domain learning, specifically designed to enhance the generalizability of deepfake detectors. Our method forces the detector to continuously focus on high-frequency information, exploiting high-frequency representation of features across spatial and channel dimensions. Additionally, we incorporate a straightforward frequency domain learning module to learn source-agnostic features. It involves convolutional layers applied to both the phase spectrum and amplitude spectrum between the Fast Fourier Transform (FFT) and Inverse Fast Fourier Transform (iFFT). Extensive experimentation involving 17 GANs demonstrates the effectiveness of our proposed method, showcasing state-of-the-art performance (+9.8\%) while requiring fewer parameters. The code is available at {\cred https://github.com/chuangchuangtan/FreqNet-DeepfakeDetection}.

  • 6 authors
·
Mar 11, 2024

A search for periodic activity in multi-peaked long gamma-ray bursts

A sizeable fraction of gamma-ray burst (GRB) light curves (LCs) features a sequence of peaks, which holds information on the unknown way energy is dissipated into gamma-rays over time. Traditional searches for periodic signals in GRB LCs turned out to be inconclusive, partly because they are challenging as a consequence of the short-lived, coloured-noise, and non-stationary nature of the LCs themselves. Yet, recent claims have revived the issue. We searched for periodic components in GRB LCs through a new approach to GRBs, that avoids most of the issues faced by traditional techniques. We identified peaks through a well tested algorithm and selected GRBs with at least 10 peaks out of 5 GRB catalogues (Swift/BAT, CGRO/BATSE, Fermi/GBM, Insight-HXMT, BeppoSAX/GRBM). Each GRB was simply treated as a discrete point process, whose realisation coincides with the sequence of peak times. We searched for possible periodic recurrences based on the multinomial distribution, after accounting for the clustering of peaks due to the non-stationarity of the GRB signals. The best candidate has a p-value of 3e-4 that there is no periodic recurrence. However, accounting for the multiple trials of 555 searched GRBs, its statistical significance is demoted to 17%. The overall distribution of the p-values obtained for all GRBs is compatible with a uniform distribution in [0,1]. We found no robust evidence for multi-peaked GRBs with periodic recurrences. We can exclude that a sizeable fraction (>~ 0.75) of peaks of each GRB with at least 10 peaks are periodic. While our result does not necessarily clash with claimed periodicities based on Fourier techniques, it constrains the putative recurrent behaviour, which would not manifest itself through the sequence of peaks, but, evidently, in a more elusive way.

  • 13 authors
·
Apr 10, 2025

Multi-mode Pulsations in AGB Stars: Insights from 3D RHD CO5BOLD Simulations

Stars on the AGB can exhibit acoustic pulsation modes of different radial orders, along with non-radial modes. These pulsations are essential to the mass-loss process and influence the evolutionary pathways of AGB stars. P-L relations serve as a valuable diagnostic for understanding stellar evolution along the AGB. 3D RHD simulations provide a powerful tool for investigating pulsation phenomena driven by convective processes and their non-linear coupling with stellar oscillations. We investigate multi-mode pulsations in AGB stars using advanced 3D 'star-in-a-box' simulations with the CO5BOLD code. Signatures of these multi-mode pulsations were weak in our previous 3D models. Our focus is on identifying and characterising the various pulsation modes, examining their persistence and transitions, and comparing the results with 1D model predictions and observational data where applicable. We produced a new model grid comprising AGB stars with current masses of 0.7, 0.8, and 1,M_{odot}. Fourier analysis was applied to dynamic, time-dependent quantities to extract dominant pulsation modes and their corresponding periods. Additionally, wavelet transforms were employed to identify mode-switching behaviour over time. The models successfully reproduce the P-L sequences found in AGB stars. Mode-switching phenomena are found in both the models and wavelet analyses of observational data, allowing us to infer similarities in the underlying pulsation dynamics. These 3D simulations highlight the natural emergence of multi-mode pulsations, including both radial and non-radial modes, driven by the self-consistent interplay of convection and oscillations. Our findings underscore the value of 3D RHD models in capturing the non-linear behaviour of AGB pulsations, providing insights into mode switching, envelope structures, and potential links to episodic mass-loss events.

  • 3 authors
·
Feb 17, 2025

A Model Zoo on Phase Transitions in Neural Networks

Using the weights of trained Neural Network (NN) models as data modality has recently gained traction as a research field - dubbed Weight Space Learning (WSL). Multiple recent works propose WSL methods to analyze models, evaluate methods, or synthesize weights. Weight space learning methods require populations of trained models as datasets for development and evaluation. However, existing collections of models - called `model zoos' - are unstructured or follow a rudimentary definition of diversity. In parallel, work rooted in statistical physics has identified phases and phase transitions in NN models. Models are homogeneous within the same phase but qualitatively differ from one phase to another. We combine the idea of `model zoos' with phase information to create a controlled notion of diversity in populations. We introduce 12 large-scale zoos that systematically cover known phases and vary over model architecture, size, and datasets. These datasets cover different modalities, such as computer vision, natural language processing, and scientific ML. For every model, we compute loss landscape metrics and validate full coverage of the phases. With this dataset, we provide the community with a resource with a wide range of potential applications for WSL and beyond. Evidence suggests the loss landscape phase plays a role in applications such as model training, analysis, or sparsification. We demonstrate this in an exploratory study of the downstream methods like transfer learning or model weights averaging.

  • 6 authors
·
Apr 25, 2025 2

SpecCLIP: Aligning and Translating Spectroscopic Measurements for Stars

In recent years, large language models (LLMs) have transformed natural language understanding through vast datasets and large-scale parameterization. Inspired by this success, we present SpecCLIP, a foundation model framework that extends LLM-inspired methodologies to stellar spectral analysis. Stellar spectra, akin to structured language, encode rich physical and chemical information about stars. By training foundation models on large-scale spectral datasets, our goal is to learn robust and informative embeddings that support diverse downstream applications. As a proof of concept, SpecCLIP involves pre-training on two spectral types--LAMOST low-resolution and Gaia XP--followed by contrastive alignment using the CLIP (Contrastive Language-Image Pre-training) framework, adapted to associate spectra from different instruments. This alignment is complemented by auxiliary decoders that preserve spectrum-specific information and enable translation (prediction) between spectral types, with the former achieved by maximizing mutual information between embeddings and input spectra. The result is a cross-spectrum framework enabling intrinsic calibration and flexible applications across instruments. We demonstrate that fine-tuning these models on moderate-sized labeled datasets improves adaptability to tasks such as stellar-parameter estimation and chemical-abundance determination. SpecCLIP also enhances the accuracy and precision of parameter estimates benchmarked against external survey data. Additionally, its similarity search and cross-spectrum prediction capabilities offer potential for anomaly detection. Our results suggest that contrastively trained foundation models enriched with spectrum-aware decoders can advance precision stellar spectroscopy.

  • 9 authors
·
Jul 2, 2025

Huge Ensembles Part I: Design of Ensemble Weather Forecasts using Spherical Fourier Neural Operators

Studying low-likelihood high-impact extreme weather events in a warming world is a significant and challenging task for current ensemble forecasting systems. While these systems presently use up to 100 members, larger ensembles could enrich the sampling of internal variability. They may capture the long tails associated with climate hazards better than traditional ensemble sizes. Due to computational constraints, it is infeasible to generate huge ensembles (comprised of 1,000-10,000 members) with traditional, physics-based numerical models. In this two-part paper, we replace traditional numerical simulations with machine learning (ML) to generate hindcasts of huge ensembles. In Part I, we construct an ensemble weather forecasting system based on Spherical Fourier Neural Operators (SFNO), and we discuss important design decisions for constructing such an ensemble. The ensemble represents model uncertainty through perturbed-parameter techniques, and it represents initial condition uncertainty through bred vectors, which sample the fastest growing modes of the forecast. Using the European Centre for Medium-Range Weather Forecasts Integrated Forecasting System (IFS) as a baseline, we develop an evaluation pipeline composed of mean, spectral, and extreme diagnostics. Using large-scale, distributed SFNOs with 1.1 billion learned parameters, we achieve calibrated probabilistic forecasts. As the trajectories of the individual members diverge, the ML ensemble mean spectra degrade with lead time, consistent with physical expectations. However, the individual ensemble members' spectra stay constant with lead time. Therefore, these members simulate realistic weather states, and the ML ensemble thus passes a crucial spectral test in the literature. The IFS and ML ensembles have similar Extreme Forecast Indices, and we show that the ML extreme weather forecasts are reliable and discriminating.

  • 16 authors
·
Aug 6, 2024

First Order Quantum Phase Transition in the Hybrid Metal-Mott Insulator Transition Metal Dichalcogenide 4Hb-TaS2

Coupling together distinct correlated and topologically non-trivial electronic phases of matter can potentially induce novel electronic orders and phase transitions among them. Transition metal dichalcogenide compounds serve as a bedrock for exploration of such hybrid systems. They host a variety of exotic electronic phases and their Van der Waals nature enables to admix them, either by exfoliation and stacking or by stoichiometric growth, and thereby induce novel correlated complexes. Here we investigate the compound 4Hb-TaS_2 that interleaves the Mott-insulating state of 1T-TaS_2 and the putative spin liquid it hosts together with the metallic state of 2H-TaS_2 and the low temperature superconducting phase it harbors. We reveal a thermodynamic phase diagram that hosts a first order quantum phase transition between a correlated Kondo cluster state and a flat band state in which the Kondo cluster becomes depleted. We demonstrate that this intrinsic transition can be induced by an electric field and temperature as well as by manipulation of the interlayer coupling with the probe tip, hence allowing to reversibly toggle between the Kondo cluster and the flat band states. The phase transition is manifested by a discontinuous change of the complete electronic spectrum accompanied by hysteresis and low frequency noise. We find that the shape of the transition line in the phase diagram is determined by the local compressibility and the entropy of the two electronic states. Our findings set such heterogeneous structures as an exciting platform for systematic investigation and manipulation of Mott-metal transitions and strongly correlated phases and quantum phase transitions therein.

  • 11 authors
·
Mar 2, 2023

Gaia Data Release 3: Summary of the content and survey properties

We present the third data release of the European Space Agency's Gaia mission, GDR3. The GDR3 catalogue is the outcome of the processing of raw data collected with the Gaia instruments during the first 34 months of the mission by the Gaia Data Processing and Analysis Consortium. The GDR3 catalogue contains the same source list, celestial positions, proper motions, parallaxes, and broad band photometry in the G, G_{BP}, and G_{RP} pass-bands already present in the Early Third Data Release. GDR3 introduces an impressive wealth of new data products. More than 33 million objects in the ranges G_{rvs} < 14 and 3100 <T_{eff} <14500 , have new determinations of their mean radial velocities based on data collected by Gaia. We provide G_{rvs} magnitudes for most sources with radial velocities, and a line broadening parameter is listed for a subset of these. Mean Gaia spectra are made available to the community. The GDR3 catalogue includes about 1 million mean spectra from the radial velocity spectrometer, and about 220 million low-resolution blue and red prism photometer BPRP mean spectra. The results of the analysis of epoch photometry are provided for some 10 million sources across 24 variability types. GDR3 includes astrophysical parameters and source class probabilities for about 470 million and 1500 million sources, respectively, including stars, galaxies, and quasars. Orbital elements and trend parameters are provided for some 800,000 astrometric, spectroscopic and eclipsing binaries. More than 150,000 Solar System objects, including new discoveries, with preliminary orbital solutions and individual epoch observations are part of this release. Reflectance spectra derived from the epoch BPRP spectral data are published for about 60\,000 asteroids. Finally, an additional data set is provided, namely the Gaia Andromeda Photometric Survey (abridged)

  • 456 authors
·
Jul 30, 2022

Interferometer response characterization algorithm for multi-aperture Fabry-Perot imaging spectrometers

In recent years, the demand for hyperspectral imaging devices has grown significantly, driven by their ability of capturing high-resolution spectral information. Among the several possible optical designs for acquiring hyperspectral images, there is a growing interest in interferometric spectral imaging systems based on division of aperture. These systems have the advantage of capturing snapshot acquisitions while maintaining a compact design. However, they require a careful calibration to operate properly. In this work, we present the interferometer response characterization algorithm (IRCA), a robust three-step procedure designed to characterize the transmittance response of multi-aperture imaging spectrometers based on the interferometry of Fabry-Perot. Additionally, we propose a formulation of the image formation model for such devices suitable to estimate the parameters of interest by considering the model under various regimes of finesse. The proposed algorithm processes the image output obtained from a set of monochromatic light sources and refines the results using nonlinear regression after an ad-hoc initialization. Through experimental analysis conducted on four different prototypes from the Image SPectrometer On Chip (ImSPOC) family, we validate the performance of our approach for characterization. The associated source code for this paper is available at https://github.com/danaroth83/irca.

  • 5 authors
·
Mar 24, 2023

Chirp Localization via Fine-Tuned Transformer Model: A Proof-of-Concept Study

Spectrograms are pivotal in time-frequency signal analysis, widely used in audio processing and computational neuroscience. Chirp-like patterns in electroencephalogram (EEG) spectrograms (marked by linear or exponential frequency sweep) are key biomarkers for seizure dynamics, but automated tools for their detection, localization, and feature extraction are lacking. This study bridges this gap by fine-tuning a Vision Transformer (ViT) model on synthetic spectrograms, augmented with Low-Rank Adaptation (LoRA) to boost adaptability. We generated 100000 synthetic spectrograms with chirp parameters, creating the first large-scale benchmark for chirp localization. These spectrograms mimic neural chirps using linear or exponential frequency sweep, Gaussian noise, and smoothing. A ViT model, adapted for regression, predicted chirp parameters. LoRA fine-tuned the attention layers, enabling efficient updates to the pre-trained backbone. Training used MSE loss and the AdamW optimizer, with a learning rate scheduler and early stopping to curb overfitting. Only three features were targeted: Chirp Start Time (Onset Time), Chirp Start Frequency (Onset Frequency), and Chirp End Frequency (Offset Frequency). Performance was evaluated via Pearson correlation between predicted and actual labels. Results showed strong alignment: 0.9841 correlation for chirp start time, with stable inference times (137 to 140s) and minimal bias in error distributions. This approach offers a tool for chirp analysis in EEG time-frequency representation, filling a critical methodological void.

  • 2 authors
·
Mar 24, 2025

Dense Hebbian neural networks: a replica symmetric picture of supervised learning

We consider dense, associative neural-networks trained by a teacher (i.e., with supervision) and we investigate their computational capabilities analytically, via statistical-mechanics of spin glasses, and numerically, via Monte Carlo simulations. In particular, we obtain a phase diagram summarizing their performance as a function of the control parameters such as quality and quantity of the training dataset, network storage and noise, that is valid in the limit of large network size and structureless datasets: these networks may work in a ultra-storage regime (where they can handle a huge amount of patterns, if compared with shallow neural networks) or in a ultra-detection regime (where they can perform pattern recognition at prohibitive signal-to-noise ratios, if compared with shallow neural networks). Guided by the random theory as a reference framework, we also test numerically learning, storing and retrieval capabilities shown by these networks on structured datasets as MNist and Fashion MNist. As technical remarks, from the analytic side, we implement large deviations and stability analysis within Guerra's interpolation to tackle the not-Gaussian distributions involved in the post-synaptic potentials while, from the computational counterpart, we insert Plefka approximation in the Monte Carlo scheme, to speed up the evaluation of the synaptic tensors, overall obtaining a novel and broad approach to investigate supervised learning in neural networks, beyond the shallow limit, in general.

  • 8 authors
·
Nov 25, 2022

waveOrder: generalist framework for label-agnostic computational microscopy

Correlative computational microscopy is accelerating the mapping of dynamic biological systems by integrating morphological and molecular measurements across spatial scales, from organelles to entire organisms. Visualization, measurement, and prediction of interactions among the components of biological systems can be accelerated by generalist computational imaging frameworks that relax the trade-offs imposed by multiplex dynamic imaging. This work reports a generalist framework for wave optical imaging of the architectural order (waveOrder) among biomolecules for encoding and decoding multiple specimen properties from a minimal set of acquired channels, with or without fluorescent labels. waveOrder expresses material properties in terms of elegant physically motivated basis vectors directly interpretable as phase, absorption, birefringence, diattenuation, and fluorophore density; and it expresses image data in terms of directly measurable Stokes parameters. We report a corresponding multi-channel reconstruction algorithm to recover specimen properties in multiple contrast modes. With this framework, we implement multiple 3D computational microscopy methods, including quantitative phase imaging, quantitative label-free imaging with phase and polarization, and fluorescence deconvolution imaging, across scales ranging from organelles to whole zebrafish. These advances are available via an extensible open-source computational imaging library, waveOrder, and a napari plugin, recOrder.

  • 9 authors
·
Dec 12, 2024

MPTSNet: Integrating Multiscale Periodic Local Patterns and Global Dependencies for Multivariate Time Series Classification

Multivariate Time Series Classification (MTSC) is crucial in extensive practical applications, such as environmental monitoring, medical EEG analysis, and action recognition. Real-world time series datasets typically exhibit complex dynamics. To capture this complexity, RNN-based, CNN-based, Transformer-based, and hybrid models have been proposed. Unfortunately, current deep learning-based methods often neglect the simultaneous construction of local features and global dependencies at different time scales, lacking sufficient feature extraction capabilities to achieve satisfactory classification accuracy. To address these challenges, we propose a novel Multiscale Periodic Time Series Network (MPTSNet), which integrates multiscale local patterns and global correlations to fully exploit the inherent information in time series. Recognizing the multi-periodicity and complex variable correlations in time series, we use the Fourier transform to extract primary periods, enabling us to decompose data into multiscale periodic segments. Leveraging the inherent strengths of CNN and attention mechanism, we introduce the PeriodicBlock, which adaptively captures local patterns and global dependencies while offering enhanced interpretability through attention integration across different periodic scales. The experiments on UEA benchmark datasets demonstrate that the proposed MPTSNet outperforms 21 existing advanced baselines in the MTSC tasks.

  • 3 authors
·
Mar 7, 2025

Pattern and Origin for the Extreme γ-ray Flares of 3C 454.3 and 3C 279: An Astrophysical Critical Damper?

We apply a Gaussian process method to the extreme gamma-ray flares of 3C 454.3 and 3C 279 to discover the variable patterns and then to investigate the physical origins of the giant flares. The kernels of stochastically driven damped simple harmonic oscillator (SHO), the damped random-walk (DRW), and Matrm ern-3/2 are respectively used to describe the adaptive-binning gamma-ray light curves of the two flares. Our findings show that both the extreme gamma-ray flares of 3C 454.3 and 3C 279 clearly prefer the SHO kernel in the over-damped mode and the Matrm ern-3/2 kernel over the DRW kernel. The resulted SHO and Matrm ern-3/2 power spectral densities (PSDs) are the same for each object, with the index changing from -4 at high frequencies to 0 at low frequencies. The patterns of the two flares are both approaching the critical damping mode with the quality factor Q approx 0.4 (i.e., the damping ratio eta approx 1.25), but with slightly different damping timescales. The characteristic timescale (corresponding to the broken frequency in the PSD) for 3C 454.3 is 2-3 days and 3-5 days for 3C 279. The variable patterns found here suggest that once the system responds to the energy injection disturbance, the release of the energy in the system is finished abruptly. The obtained timescale provides a constraint on the size of energy dissipation region for each source.

  • 5 authors
·
Feb 28, 2025

Astrometric Effects of a Stochastic Gravitational Wave Background

A stochastic gravitational wave background causes the apparent positions of distant sources to fluctuate, with angular deflections of order the characteristic strain amplitude of the gravitational waves. These fluctuations may be detectable with high precision astrometry, as first suggested by Braginsky et al. in 1990. Several researchers have made order of magnitude estimates of the upper limits obtainable on the gravitational wave spectrum \Omega_gw(f), at frequencies of order f ~ 1 yr^-1, both for the future space-based optical interferometry missions GAIA and SIM, and for VLBI interferometry in radio wavelengths with the SKA. For GAIA, tracking N ~ 10^6 quasars over a time of T ~ 1 yr with an angular accuracy of \Delta \theta ~ 10 \mu as would yield a sensitivity level of \Omega_gw ~ (\Delta \theta)^2/(N T^2 H_0^2) ~ 10^-6, which would be comparable with pulsar timing. In this paper we take a first step toward firming up these estimates by computing in detail the statistical properties of the angular deflections caused by a stochastic background. We compute analytically the two point correlation function of the deflections on the sphere, and the spectrum as a function of frequency and angular scale. The fluctuations are concentrated at low frequencies (for a scale invariant stochastic background), and at large angular scales, starting with the quadrupole. The magnetic-type and electric-type pieces of the fluctuations have equal amounts of power.

  • 2 authors
·
Sep 21, 2010

EndoNet: A Deep Architecture for Recognition Tasks on Laparoscopic Videos

Surgical workflow recognition has numerous potential medical applications, such as the automatic indexing of surgical video databases and the optimization of real-time operating room scheduling, among others. As a result, phase recognition has been studied in the context of several kinds of surgeries, such as cataract, neurological, and laparoscopic surgeries. In the literature, two types of features are typically used to perform this task: visual features and tool usage signals. However, the visual features used are mostly handcrafted. Furthermore, the tool usage signals are usually collected via a manual annotation process or by using additional equipment. In this paper, we propose a novel method for phase recognition that uses a convolutional neural network (CNN) to automatically learn features from cholecystectomy videos and that relies uniquely on visual information. In previous studies, it has been shown that the tool signals can provide valuable information in performing the phase recognition task. Thus, we present a novel CNN architecture, called EndoNet, that is designed to carry out the phase recognition and tool presence detection tasks in a multi-task manner. To the best of our knowledge, this is the first work proposing to use a CNN for multiple recognition tasks on laparoscopic videos. Extensive experimental comparisons to other methods show that EndoNet yields state-of-the-art results for both tasks.

  • 6 authors
·
Feb 9, 2016

Frequency-Specific Neural Response and Cross-Correlation Analysis of Envelope Following Responses to Native Speech and Music Using Multichannel EEG Signals: A Case Study

Although native speech and music envelope following responses (EFRs) play a crucial role in auditory processing and cognition, their frequency profile, such as the dominating frequency and spectral coherence, is largely unknown. We have assumed that the auditory pathway - which transmits envelope components of speech and music to the scalp through time-varying neurophysiological processes - is a linear time-varying system, with the envelope and the multi-channel EEG responses as excitation and response, respectively. This paper investigates the transfer function of this system through two analytical techniques - time-averaged spectral responses and cross-spectral density - in the frequency domain at four different positions of the human scalp. Our findings suggest that alpha (8-11 Hz), lower gamma (53-56 Hz), and higher gamma (78-81 Hz) bands are the peak responses of the system. These frequently appearing dominant frequency responses may be the key components of familiar speech perception, maintaining attention, binding acoustic features, and memory processing. The cross-spectral density, which reflects the spatial neural coherence of the human brain, shows that 10-13 Hz, 27-29 Hz, and 62-64 Hz are common for all channel pairs. As neural coherences are frequently observed in these frequencies among native participants, we suggest that these distributed neural processes are also dominant in native speech and music perception.

  • 4 authors
·
Jul 7, 2025