Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeX-Node: Self-Explanation is All We Need
Graph neural networks (GNNs) have achieved state-of-the-art results in computer vision and medical image classification tasks by capturing structural dependencies across data instances. However, their decision-making remains largely opaque, limiting their trustworthiness in high-stakes clinical applications where interpretability is essential. Existing explainability techniques for GNNs are typically post-hoc and global, offering limited insight into individual node decisions or local reasoning. We introduce X-Node, a self-explaining GNN framework in which each node generates its own explanation as part of the prediction process. For every node, we construct a structured context vector encoding interpretable cues such as degree, centrality, clustering, feature saliency, and label agreement within its local topology. A lightweight Reasoner module maps this context into a compact explanation vector, which serves three purposes: (1) reconstructing the node's latent embedding via a decoder to enforce faithfulness, (2) generating a natural language explanation using a pre-trained LLM (e.g., Grok or Gemini), and (3) guiding the GNN itself via a "text-injection" mechanism that feeds explanations back into the message-passing pipeline. We evaluate X-Node on two graph datasets derived from MedMNIST and MorphoMNIST, integrating it with GCN, GAT, and GIN backbones. Our results show that X-Node maintains competitive classification accuracy while producing faithful, per-node explanations. Repository: https://github.com/basiralab/X-Node.
SG-Reg: Generalizable and Efficient Scene Graph Registration
This paper addresses the challenges of registering two rigid semantic scene graphs, an essential capability when an autonomous agent needs to register its map against a remote agent, or against a prior map. The hand-crafted descriptors in classical semantic-aided registration, or the ground-truth annotation reliance in learning-based scene graph registration, impede their application in practical real-world environments. To address the challenges, we design a scene graph network to encode multiple modalities of semantic nodes: open-set semantic feature, local topology with spatial awareness, and shape feature. These modalities are fused to create compact semantic node features. The matching layers then search for correspondences in a coarse-to-fine manner. In the back-end, we employ a robust pose estimator to decide transformation according to the correspondences. We manage to maintain a sparse and hierarchical scene representation. Our approach demands fewer GPU resources and fewer communication bandwidth in multi-agent tasks. Moreover, we design a new data generation approach using vision foundation models and a semantic mapping module to reconstruct semantic scene graphs. It differs significantly from previous works, which rely on ground-truth semantic annotations to generate data. We validate our method in a two-agent SLAM benchmark. It significantly outperforms the hand-crafted baseline in terms of registration success rate. Compared to visual loop closure networks, our method achieves a slightly higher registration recall while requiring only 52 KB of communication bandwidth for each query frame. Code available at: http://github.com/HKUST-Aerial-Robotics/SG-Reg{http://github.com/HKUST-Aerial-Robotics/SG-Reg}.
Annotator: A Generic Active Learning Baseline for LiDAR Semantic Segmentation
Active learning, a label-efficient paradigm, empowers models to interactively query an oracle for labeling new data. In the realm of LiDAR semantic segmentation, the challenges stem from the sheer volume of point clouds, rendering annotation labor-intensive and cost-prohibitive. This paper presents Annotator, a general and efficient active learning baseline, in which a voxel-centric online selection strategy is tailored to efficiently probe and annotate the salient and exemplar voxel girds within each LiDAR scan, even under distribution shift. Concretely, we first execute an in-depth analysis of several common selection strategies such as Random, Entropy, Margin, and then develop voxel confusion degree (VCD) to exploit the local topology relations and structures of point clouds. Annotator excels in diverse settings, with a particular focus on active learning (AL), active source-free domain adaptation (ASFDA), and active domain adaptation (ADA). It consistently delivers exceptional performance across LiDAR semantic segmentation benchmarks, spanning both simulation-to-real and real-to-real scenarios. Surprisingly, Annotator exhibits remarkable efficiency, requiring significantly fewer annotations, e.g., just labeling five voxels per scan in the SynLiDAR-to-SemanticKITTI task. This results in impressive performance, achieving 87.8% fully-supervised performance under AL, 88.5% under ASFDA, and 94.4% under ADA. We envision that Annotator will offer a simple, general, and efficient solution for label-efficient 3D applications. Project page: https://binhuixie.github.io/annotator-web
A Topological Perspective on Demystifying GNN-Based Link Prediction Performance
Graph Neural Networks (GNNs) have shown great promise in learning node embeddings for link prediction (LP). While numerous studies aim to improve the overall LP performance of GNNs, none have explored its varying performance across different nodes and its underlying reasons. To this end, we aim to demystify which nodes will perform better from the perspective of their local topology. Despite the widespread belief that low-degree nodes exhibit poorer LP performance, our empirical findings provide nuances to this viewpoint and prompt us to propose a better metric, Topological Concentration (TC), based on the intersection of the local subgraph of each node with the ones of its neighbors. We empirically demonstrate that TC has a higher correlation with LP performance than other node-level topological metrics like degree and subgraph density, offering a better way to identify low-performing nodes than using cold-start. With TC, we discover a novel topological distribution shift issue in which newly joined neighbors of a node tend to become less interactive with that node's existing neighbors, compromising the generalizability of node embeddings for LP at testing time. To make the computation of TC scalable, We further propose Approximated Topological Concentration (ATC) and theoretically/empirically justify its efficacy in approximating TC and reducing the computation complexity. Given the positive correlation between node TC and its LP performance, we explore the potential of boosting LP performance via enhancing TC by re-weighting edges in the message-passing and discuss its effectiveness with limitations. Our code is publicly available at https://github.com/YuWVandy/Topo_LP_GNN.
Primal-Dual Mesh Convolutional Neural Networks
Recent works in geometric deep learning have introduced neural networks that allow performing inference tasks on three-dimensional geometric data by defining convolution, and sometimes pooling, operations on triangle meshes. These methods, however, either consider the input mesh as a graph, and do not exploit specific geometric properties of meshes for feature aggregation and downsampling, or are specialized for meshes, but rely on a rigid definition of convolution that does not properly capture the local topology of the mesh. We propose a method that combines the advantages of both types of approaches, while addressing their limitations: we extend a primal-dual framework drawn from the graph-neural-network literature to triangle meshes, and define convolutions on two types of graphs constructed from an input mesh. Our method takes features for both edges and faces of a 3D mesh as input and dynamically aggregates them using an attention mechanism. At the same time, we introduce a pooling operation with a precise geometric interpretation, that allows handling variations in the mesh connectivity by clustering mesh faces in a task-driven fashion. We provide theoretical insights of our approach using tools from the mesh-simplification literature. In addition, we validate experimentally our method in the tasks of shape classification and shape segmentation, where we obtain comparable or superior performance to the state of the art.
Graphlets correct for the topological information missed by random walks
Random walks are widely used for mining networks due to the computational efficiency of computing them. For instance, graph representation learning learns a d-dimensional embedding space, so that the nodes that tend to co-occur on random walks (a proxy of being in the same network neighborhood) are close in the embedding space. Specific local network topology (i.e., structure) influences the co-occurrence of nodes on random walks, so random walks of limited length capture only partial topological information, hence diminishing the performance of downstream methods. We explicitly capture all topological neighborhood information and improve performance by introducing orbit adjacencies that quantify the adjacencies of two nodes as co-occurring on a given pair of graphlet orbits, which are symmetric positions on graphlets (small, connected, non-isomorphic, induced subgraphs of a large network). Importantly, we mathematically prove that random walks on up to k nodes capture only a subset of all the possible orbit adjacencies for up to k-node graphlets. Furthermore, we enable orbit adjacency-based analysis of networks by developing an efficient GRaphlet-orbit ADjacency COunter (GRADCO), which exhaustively computes all 28 orbit adjacency matrices for up to four-node graphlets. Note that four-node graphlets suffice, because real networks are usually small-world. In large networks on around 20,000 nodes, GRADCOcomputesthe28matricesinminutes. Onsixrealnetworksfromvarious domains, we compare the performance of node-label predictors obtained by using the network embeddings based on our orbit adjacencies to those based on random walks. We find that orbit adjacencies, which include those unseen by random walks, outperform random walk-based adjacencies, demonstrating the importance of the inclusion of the topological neighborhood information that is unseen by random walks.
Follow the curvature of viscoelastic stress: Insights into the steady arrowhead structure
Focusing on simulated dilute polymer solutions, this letter investigates the interactions between flow structures and organized polymer stress sheets for the steady arrowhead coherent structure in a two-dimensional periodic channel flow. Formulating the problem in a frame of reference moving with the arrowhead velocity, streamlines, which are also pathlines in this frame, enables the identification of two distinct topological regions linked to two stagnation points. The streamlines help connecting the spatial distribution of polymer stress within the sheets and the dynamics of polymers transported by the flow. Using stresslines, lines parallel to the eigenvectors of polymer stress, a novel formulation of the viscoelastic stress term in the momentum transport equation proposes a more intuitive interpretation of the relation between the curvature of the stresslines, and the variation of stress along these lines, with the local flow topology. An approximation of this formulation is shown to explain the pressure jump observed in the arrowhead structure as a function of the local curvature of the polymer stress sheet.
Convergence of local times of stochastic processes associated with resistance forms
In this paper, it is shown that if a sequence of resistance metric spaces equipped with measures converges with respect to the local Gromov-Hausdorff-vague topology, and certain non-explosion and metric-entropy conditions are satisfied, then the associated stochastic processes and their local times also converge. The metric-entropy condition can be checked by applying volume estimates of balls. Whilst similar results have been proved previously, the approach of this article is more widely applicable. Indeed, we recover various known conclusions for scaling limits of some deterministic self-similar fractal graphs, critical Galton-Watson trees, the critical Erdos-R\'enyi random graph and the configuration model (in the latter two cases, we prove for the first time the convergence of the models with respect to the resistance metric and also, for the configuration model, we overcome an error in the existing proof of local time convergence). Moreover, we derive new ones for scaling limits of uniform spanning trees and random recursive fractals. The metric-entropy condition also implies convergence of associated Gaussian processes.
FSAR: Federated Skeleton-based Action Recognition with Adaptive Topology Structure and Knowledge Distillation
Existing skeleton-based action recognition methods typically follow a centralized learning paradigm, which can pose privacy concerns when exposing human-related videos. Federated Learning (FL) has attracted much attention due to its outstanding advantages in privacy-preserving. However, directly applying FL approaches to skeleton videos suffers from unstable training. In this paper, we investigate and discover that the heterogeneous human topology graph structure is the crucial factor hindering training stability. To address this limitation, we pioneer a novel Federated Skeleton-based Action Recognition (FSAR) paradigm, which enables the construction of a globally generalized model without accessing local sensitive data. Specifically, we introduce an Adaptive Topology Structure (ATS), separating generalization and personalization by learning a domain-invariant topology shared across clients and a domain-specific topology decoupled from global model aggregation.Furthermore, we explore Multi-grain Knowledge Distillation (MKD) to mitigate the discrepancy between clients and server caused by distinct updating patterns through aligning shallow block-wise motion features. Extensive experiments on multiple datasets demonstrate that FSAR outperforms state-of-the-art FL-based methods while inherently protecting privacy.
Reducing Training Time in Cross-Silo Federated Learning using Multigraph Topology
Federated learning is an active research topic since it enables several participants to jointly train a model without sharing local data. Currently, cross-silo federated learning is a popular training setting that utilizes a few hundred reliable data silos with high-speed access links to training a model. While this approach has been widely applied in real-world scenarios, designing a robust topology to reduce the training time remains an open problem. In this paper, we present a new multigraph topology for cross-silo federated learning. We first construct the multigraph using the overlay graph. We then parse this multigraph into different simple graphs with isolated nodes. The existence of isolated nodes allows us to perform model aggregation without waiting for other nodes, hence effectively reducing the training time. Intensive experiments on three public datasets show that our proposed method significantly reduces the training time compared with recent state-of-the-art topologies while maintaining the accuracy of the learned model. Our code can be found at https://github.com/aioz-ai/MultigraphFL
LGESQL: Line Graph Enhanced Text-to-SQL Model with Mixed Local and Non-Local Relations
This work aims to tackle the challenging heterogeneous graph encoding problem in the text-to-SQL task. Previous methods are typically node-centric and merely utilize different weight matrices to parameterize edge types, which 1) ignore the rich semantics embedded in the topological structure of edges, and 2) fail to distinguish local and non-local relations for each node. To this end, we propose a Line Graph Enhanced Text-to-SQL (LGESQL) model to mine the underlying relational features without constructing meta-paths. By virtue of the line graph, messages propagate more efficiently through not only connections between nodes, but also the topology of directed edges. Furthermore, both local and non-local relations are integrated distinctively during the graph iteration. We also design an auxiliary task called graph pruning to improve the discriminative capability of the encoder. Our framework achieves state-of-the-art results (62.8% with Glove, 72.0% with Electra) on the cross-domain text-to-SQL benchmark Spider at the time of writing.
Topological Singularity Detection at Multiple Scales
The manifold hypothesis, which assumes that data lies on or close to an unknown manifold of low intrinsic dimension, is a staple of modern machine learning research. However, recent work has shown that real-world data exhibits distinct non-manifold structures, i.e. singularities, that can lead to erroneous findings. Detecting such singularities is therefore crucial as a precursor to interpolation and inference tasks. We address this issue by developing a topological framework that (i) quantifies the local intrinsic dimension, and (ii) yields a Euclidicity score for assessing the 'manifoldness' of a point along multiple scales. Our approach identifies singularities of complex spaces, while also capturing singular structures and local geometric complexity in image data.
Týr-the-Pruner: Structural Pruning LLMs via Global Sparsity Distribution Optimization
Structural pruning enhances hardware-agnostic inference efficiency for large language models (LLMs) yet often fails to maintain comparable performance. Local pruning performs efficient layer-by-layer compression but ignores global topology. Although global pruning aims to identify an optimal sparse model, intuitive methods typically adopt a two-stage paradigm that first evaluates substructure saliency and then applies global pruning, which ignores inter-structure dependencies and fails to achieve end-to-end optimization. To address these limitations, we propose T\'yr-the-Pruner, an efficient end-to-end search-based global structural pruning framework. This framework constructs a supernet by repeatedly applying local pruning across a range of sparsity ratios to each layer in an LLM, with the core goal of determining the optimal sparsity distribution under a target overall sparsity ratio. Concretely, we introduce an effective local pruning and an expectation error accumulation approach to improve supernet construction. Furthermore, we employ an iterative prune-and-search strategy with coarse-to-fine sparsity granularity to ensure efficient search convergence. Experimental results show that T\'yr-the-Pruner achieves state-of-the-art structural pruning, retaining 97% of the dense model's performance while removing a challenging 50% of Llama-3.1-70B's parameters. Code will be available at https://github.com/AMD-AGI/Tyr-the-Pruner.
TopoPerception: A Shortcut-Free Evaluation of Global Visual Perception in Large Vision-Language Models
Large Vision-Language Models (LVLMs) typically align visual features from an encoder with a pre-trained Large Language Model (LLM). However, this makes the visual perception module a bottleneck, which constrains the overall capabilities of LVLMs. Conventional evaluation benchmarks, while rich in visual semantics, often contain unavoidable local shortcuts that can lead to an overestimation of models' perceptual abilities. Here, we introduce TopoPerception, a benchmark that leverages topological properties to rigorously evaluate the global visual perception capabilities of LVLMs across various granularities. Since topology depends on the global structure of an image and is invariant to local features, TopoPerception enables a shortcut-free assessment of global perception, fundamentally distinguishing it from semantically rich tasks. We evaluate state-of-the-art models on TopoPerception and find that even at the coarsest perceptual granularity, all models perform no better than random chance, indicating a profound inability to perceive global visual features. Notably, a consistent trend emerge within model families: more powerful models with stronger reasoning capabilities exhibit lower accuracy. This suggests that merely scaling up models is insufficient to address this deficit and may even exacerbate it. Progress may require new training paradigms or architectures. TopoPerception not only exposes a critical bottleneck in current LVLMs but also offers a lens and direction for improving their global visual perception. The data and code are publicly available at: https://github.com/Wenhao-Zhou/TopoPerception.
Graph Transformers for Large Graphs
Transformers have recently emerged as powerful neural networks for graph learning, showcasing state-of-the-art performance on several graph property prediction tasks. However, these results have been limited to small-scale graphs, where the computational feasibility of the global attention mechanism is possible. The next goal is to scale up these architectures to handle very large graphs on the scale of millions or even billions of nodes. With large-scale graphs, global attention learning is proven impractical due to its quadratic complexity w.r.t. the number of nodes. On the other hand, neighborhood sampling techniques become essential to manage large graph sizes, yet finding the optimal trade-off between speed and accuracy with sampling techniques remains challenging. This work advances representation learning on single large-scale graphs with a focus on identifying model characteristics and critical design constraints for developing scalable graph transformer (GT) architectures. We argue such GT requires layers that can adeptly learn both local and global graph representations while swiftly sampling the graph topology. As such, a key innovation of this work lies in the creation of a fast neighborhood sampling technique coupled with a local attention mechanism that encompasses a 4-hop reception field, but achieved through just 2-hop operations. This local node embedding is then integrated with a global node embedding, acquired via another self-attention layer with an approximate global codebook, before finally sent through a downstream layer for node predictions. The proposed GT framework, named LargeGT, overcomes previous computational bottlenecks and is validated on three large-scale node classification benchmarks. We report a 3x speedup and 16.8% performance gain on ogbn-products and snap-patents, while we also scale LargeGT on ogbn-papers100M with a 5.9% performance improvement.
Improving the Model Consistency of Decentralized Federated Learning
To mitigate the privacy leakages and communication burdens of Federated Learning (FL), decentralized FL (DFL) discards the central server and each client only communicates with its neighbors in a decentralized communication network. However, existing DFL suffers from high inconsistency among local clients, which results in severe distribution shift and inferior performance compared with centralized FL (CFL), especially on heterogeneous data or sparse communication topology. To alleviate this issue, we propose two DFL algorithms named DFedSAM and DFedSAM-MGS to improve the performance of DFL. Specifically, DFedSAM leverages gradient perturbation to generate local flat models via Sharpness Aware Minimization (SAM), which searches for models with uniformly low loss values. DFedSAM-MGS further boosts DFedSAM by adopting Multiple Gossip Steps (MGS) for better model consistency, which accelerates the aggregation of local flat models and better balances communication complexity and generalization. Theoretically, we present improved convergence rates small Obig(1{KT}+1{T}+1{K^{1/2}T^{3/2}(1-lambda)^2}big) and small Obig(1{KT}+1{T}+lambda^Q+1{K^{1/2}T^{3/2}(1-lambda^Q)^2}big) in non-convex setting for DFedSAM and DFedSAM-MGS, respectively, where 1-lambda is the spectral gap of gossip matrix and Q is the number of MGS. Empirically, our methods can achieve competitive performance compared with CFL methods and outperform existing DFL methods.
CHARM: Control-point-based 3D Anime Hairstyle Auto-Regressive Modeling
We present CHARM, a novel parametric representation and generative framework for anime hairstyle modeling. While traditional hair modeling methods focus on realistic hair using strand-based or volumetric representations, anime hairstyle exhibits highly stylized, piecewise-structured geometry that challenges existing techniques. Existing works often rely on dense mesh modeling or hand-crafted spline curves, making them inefficient for editing and unsuitable for scalable learning. CHARM introduces a compact, invertible control-point-based parameterization, where a sequence of control points represents each hair card, and each point is encoded with only five geometric parameters. This efficient and accurate representation supports both artist-friendly design and learning-based generation. Built upon this representation, CHARM introduces an autoregressive generative framework that effectively generates anime hairstyles from input images or point clouds. By interpreting anime hairstyles as a sequential "hair language", our autoregressive transformer captures both local geometry and global hairstyle topology, resulting in high-fidelity anime hairstyle creation. To facilitate both training and evaluation of anime hairstyle generation, we construct AnimeHair, a large-scale dataset of 37K high-quality anime hairstyles with separated hair cards and processed mesh data. Extensive experiments demonstrate state-of-the-art performance of CHARM in both reconstruction accuracy and generation quality, offering an expressive and scalable solution for anime hairstyle modeling. Project page: https://hyzcluster.github.io/charm/
MeshLLM: Empowering Large Language Models to Progressively Understand and Generate 3D Mesh
We present MeshLLM, a novel framework that leverages large language models (LLMs) to understand and generate text-serialized 3D meshes. Our approach addresses key limitations in existing methods, including the limited dataset scale when catering to LLMs' token length and the loss of 3D structural information during mesh serialization. We introduce a Primitive-Mesh decomposition strategy, which divides 3D meshes into structurally meaningful subunits. This enables the creation of a large-scale dataset with 1500k+ samples, almost 50 times larger than previous methods, which aligns better with the LLM scaling law principles. Furthermore, we propose inferring face connectivity from vertices and local mesh assembly training strategies, significantly enhancing the LLMs' ability to capture mesh topology and spatial structures. Experiments show that MeshLLM outperforms the state-of-the-art LLaMA-Mesh in both mesh generation quality and shape understanding, highlighting its great potential in processing text-serialized 3D meshes.
Polynormer: Polynomial-Expressive Graph Transformer in Linear Time
Graph transformers (GTs) have emerged as a promising architecture that is theoretically more expressive than message-passing graph neural networks (GNNs). However, typical GT models have at least quadratic complexity and thus cannot scale to large graphs. While there are several linear GTs recently proposed, they still lag behind GNN counterparts on several popular graph datasets, which poses a critical concern on their practical expressivity. To balance the trade-off between expressivity and scalability of GTs, we propose Polynormer, a polynomial-expressive GT model with linear complexity. Polynormer is built upon a novel base model that learns a high-degree polynomial on input features. To enable the base model permutation equivariant, we integrate it with graph topology and node features separately, resulting in local and global equivariant attention models. Consequently, Polynormer adopts a linear local-to-global attention scheme to learn high-degree equivariant polynomials whose coefficients are controlled by attention scores. Polynormer has been evaluated on 13 homophilic and heterophilic datasets, including large graphs with millions of nodes. Our extensive experiment results show that Polynormer outperforms state-of-the-art GNN and GT baselines on most datasets, even without the use of nonlinear activation functions.
LIST: Learning Implicitly from Spatial Transformers for Single-View 3D Reconstruction
Accurate reconstruction of both the geometric and topological details of a 3D object from a single 2D image embodies a fundamental challenge in computer vision. Existing explicit/implicit solutions to this problem struggle to recover self-occluded geometry and/or faithfully reconstruct topological shape structures. To resolve this dilemma, we introduce LIST, a novel neural architecture that leverages local and global image features to accurately reconstruct the geometric and topological structure of a 3D object from a single image. We utilize global 2D features to predict a coarse shape of the target object and then use it as a base for higher-resolution reconstruction. By leveraging both local 2D features from the image and 3D features from the coarse prediction, we can predict the signed distance between an arbitrary point and the target surface via an implicit predictor with great accuracy. Furthermore, our model does not require camera estimation or pixel alignment. It provides an uninfluenced reconstruction from the input-view direction. Through qualitative and quantitative analysis, we show the superiority of our model in reconstructing 3D objects from both synthetic and real-world images against the state of the art.
DeepMapping2: Self-Supervised Large-Scale LiDAR Map Optimization
LiDAR mapping is important yet challenging in self-driving and mobile robotics. To tackle such a global point cloud registration problem, DeepMapping converts the complex map estimation into a self-supervised training of simple deep networks. Despite its broad convergence range on small datasets, DeepMapping still cannot produce satisfactory results on large-scale datasets with thousands of frames. This is due to the lack of loop closures and exact cross-frame point correspondences, and the slow convergence of its global localization network. We propose DeepMapping2 by adding two novel techniques to address these issues: (1) organization of training batch based on map topology from loop closing, and (2) self-supervised local-to-global point consistency loss leveraging pairwise registration. Our experiments and ablation studies on public datasets (KITTI, NCLT, and Nebula) demonstrate the effectiveness of our method.
Anatomical Invariance Modeling and Semantic Alignment for Self-supervised Learning in 3D Medical Image Analysis
Self-supervised learning (SSL) has recently achieved promising performance for 3D medical image analysis tasks. Most current methods follow existing SSL paradigm originally designed for photographic or natural images, which cannot explicitly and thoroughly exploit the intrinsic similar anatomical structures across varying medical images. This may in fact degrade the quality of learned deep representations by maximizing the similarity among features containing spatial misalignment information and different anatomical semantics. In this work, we propose a new self-supervised learning framework, namely Alice, that explicitly fulfills Anatomical invariance modeling and semantic alignment via elaborately combining discriminative and generative objectives. Alice introduces a new contrastive learning strategy which encourages the similarity between views that are diversely mined but with consistent high-level semantics, in order to learn invariant anatomical features. Moreover, we design a conditional anatomical feature alignment module to complement corrupted embeddings with globally matched semantics and inter-patch topology information, conditioned by the distribution of local image content, which permits to create better contrastive pairs. Our extensive quantitative experiments on three 3D medical image analysis tasks demonstrate and validate the performance superiority of Alice, surpassing the previous best SSL counterpart methods and showing promising ability for united representation learning. Codes are available at https://github.com/alibaba-damo-academy/alice.
MeshGPT: Generating Triangle Meshes with Decoder-Only Transformers
We introduce MeshGPT, a new approach for generating triangle meshes that reflects the compactness typical of artist-created meshes, in contrast to dense triangle meshes extracted by iso-surfacing methods from neural fields. Inspired by recent advances in powerful large language models, we adopt a sequence-based approach to autoregressively generate triangle meshes as sequences of triangles. We first learn a vocabulary of latent quantized embeddings, using graph convolutions, which inform these embeddings of the local mesh geometry and topology. These embeddings are sequenced and decoded into triangles by a decoder, ensuring that they can effectively reconstruct the mesh. A transformer is then trained on this learned vocabulary to predict the index of the next embedding given previous embeddings. Once trained, our model can be autoregressively sampled to generate new triangle meshes, directly generating compact meshes with sharp edges, more closely imitating the efficient triangulation patterns of human-crafted meshes. MeshGPT demonstrates a notable improvement over state of the art mesh generation methods, with a 9% increase in shape coverage and a 30-point enhancement in FID scores across various categories.
Multi-Agent Design: Optimizing Agents with Better Prompts and Topologies
Large language models, employed as multiple agents that interact and collaborate with each other, have excelled at solving complex tasks. The agents are programmed with prompts that declare their functionality, along with the topologies that orchestrate interactions across agents. Designing prompts and topologies for multi-agent systems (MAS) is inherently complex. To automate the entire design process, we first conduct an in-depth analysis of the design space aiming to understand the factors behind building effective MAS. We reveal that prompts together with topologies play critical roles in enabling more effective MAS design. Based on the insights, we propose Multi-Agent System Search (MASS), a MAS optimization framework that efficiently exploits the complex MAS design space by interleaving its optimization stages, from local to global, from prompts to topologies, over three stages: 1) block-level (local) prompt optimization; 2) workflow topology optimization; 3) workflow-level (global) prompt optimization, where each stage is conditioned on the iteratively optimized prompts/topologies from former stages. We show that MASS-optimized multi-agent systems outperform a spectrum of existing alternatives by a substantial margin. Based on the MASS-found systems, we finally propose design principles behind building effective multi-agent systems.
Weighted Flow Diffusion for Local Graph Clustering with Node Attributes: an Algorithm and Statistical Guarantees
Local graph clustering methods aim to detect small clusters in very large graphs without the need to process the whole graph. They are fundamental and scalable tools for a wide range of tasks such as local community detection, node ranking and node embedding. While prior work on local graph clustering mainly focuses on graphs without node attributes, modern real-world graph datasets typically come with node attributes that provide valuable additional information. We present a simple local graph clustering algorithm for graphs with node attributes, based on the idea of diffusing mass locally in the graph while accounting for both structural and attribute proximities. Using high-dimensional concentration results, we provide statistical guarantees on the performance of the algorithm for the recovery of a target cluster with a single seed node. We give conditions under which a target cluster generated from a fairly general contextual random graph model, which includes both the stochastic block model and the planted cluster model as special cases, can be fully recovered with bounded false positives. Empirically, we validate all theoretical claims using synthetic data, and we show that incorporating node attributes leads to superior local clustering performances using real-world graph datasets.
A Framework for Fast and Stable Representations of Multiparameter Persistent Homology Decompositions
Topological data analysis (TDA) is an area of data science that focuses on using invariants from algebraic topology to provide multiscale shape descriptors for geometric data sets such as point clouds. One of the most important such descriptors is {\em persistent homology}, which encodes the change in shape as a filtration parameter changes; a typical parameter is the feature scale. For many data sets, it is useful to simultaneously vary multiple filtration parameters, for example feature scale and density. While the theoretical properties of single parameter persistent homology are well understood, less is known about the multiparameter case. In particular, a central question is the problem of representing multiparameter persistent homology by elements of a vector space for integration with standard machine learning algorithms. Existing approaches to this problem either ignore most of the multiparameter information to reduce to the one-parameter case or are heuristic and potentially unstable in the face of noise. In this article, we introduce a new general representation framework that leverages recent results on {\em decompositions} of multiparameter persistent homology. This framework is rich in information, fast to compute, and encompasses previous approaches. Moreover, we establish theoretical stability guarantees under this framework as well as efficient algorithms for practical computation, making this framework an applicable and versatile tool for analyzing geometric and point cloud data. We validate our stability results and algorithms with numerical experiments that demonstrate statistical convergence, prediction accuracy, and fast running times on several real data sets.
Principal subbundles for dimension reduction
In this paper we demonstrate how sub-Riemannian geometry can be used for manifold learning and surface reconstruction by combining local linear approximations of a point cloud to obtain lower dimensional bundles. Local approximations obtained by local PCAs are collected into a rank k tangent subbundle on R^d, k<d, which we call a principal subbundle. This determines a sub-Riemannian metric on R^d. We show that sub-Riemannian geodesics with respect to this metric can successfully be applied to a number of important problems, such as: explicit construction of an approximating submanifold M, construction of a representation of the point-cloud in R^k, and computation of distances between observations, taking the learned geometry into account. The reconstruction is guaranteed to equal the true submanifold in the limit case where tangent spaces are estimated exactly. Via simulations, we show that the framework is robust when applied to noisy data. Furthermore, the framework generalizes to observations on an a priori known Riemannian manifold.
Construction of simplicial complexes with prescribed degree-size sequences
We study the realizability of simplicial complexes with a given pair of integer sequences, representing the node degree distribution and the facet size distribution, respectively. While the s-uniform variant of the problem is NP-complete when s geq 3, we identify two populations of input sequences, most of which can be solved in polynomial time using a recursive algorithm that we contribute. Combining with a sampler for the simplicial configuration model [J.-G. Young et al., Phys. Rev. E 96, 032312 (2017)], we facilitate the efficient sampling of simplicial ensembles from arbitrary degree and size distributions. We find that, contrary to expectations based on dyadic networks, increasing the nodes' degrees reduces the number of loops in simplicial complexes. Our work unveils a fundamental constraint on the degree-size sequences and sheds light on further analysis of higher-order phenomena based on local structures.
Complements of finite unions of convex sets
Finite unions of convex sets are a central object of study in discrete and computational geometry. In this paper we initiate a systematic study of complements of such unions -- i.e., sets of the form S=R^d setminus (cup_{i=1}^n K_i), where K_i are convex sets. In the first part of the paper we study isolated points in S, whose number is related to the Betti numbers of cup_{i=1}^n K_i and to its non-convexity properties. We obtain upper bounds on the number of such points, which are sharp for n=3 and significantly improve previous bounds of Lawrence and Morris (2009) for all n ll 2^d{d}. In the second part of the paper we study coverings of S by well-behaved sets. We show that S can be covered by at most g(d,n) flats of different dimensions, in such a way that each x in S is covered by a flat whose dimension equals the `local dimension' of S in the neighborhood of x. Furthermore, we determine the structure of a minimum cover that satisfies this property. Then, we study quantitative aspects of this minimum cover and obtain sharp upper bounds on its size in various settings.
TopoReformer: Mitigating Adversarial Attacks Using Topological Purification in OCR Models
Adversarially perturbed images of text can cause sophisticated OCR systems to produce misleading or incorrect transcriptions from seemingly invisible changes to humans. Some of these perturbations even survive physical capture, posing security risks to high-stakes applications such as document processing, license plate recognition, and automated compliance systems. Existing defenses, such as adversarial training, input preprocessing, or post-recognition correction, are often model-specific, computationally expensive, and affect performance on unperturbed inputs while remaining vulnerable to unseen or adaptive attacks. To address these challenges, TopoReformer is introduced, a model-agnostic reformation pipeline that mitigates adversarial perturbations while preserving the structural integrity of text images. Topology studies properties of shapes and spaces that remain unchanged under continuous deformations, focusing on global structures such as connectivity, holes, and loops rather than exact distance. Leveraging these topological features, TopoReformer employs a topological autoencoder to enforce manifold-level consistency in latent space and improve robustness without explicit gradient regularization. The proposed method is benchmarked on EMNIST, MNIST, against standard adversarial attacks (FGSM, PGD, Carlini-Wagner), adaptive attacks (EOT, BDPA), and an OCR-specific watermark attack (FAWA).
On the Expressivity of Persistent Homology in Graph Learning
Persistent homology, a technique from computational topology, has recently shown strong empirical performance in the context of graph classification. Being able to capture long range graph properties via higher-order topological features, such as cycles of arbitrary length, in combination with multi-scale topological descriptors, has improved predictive performance for data sets with prominent topological structures, such as molecules. At the same time, the theoretical properties of persistent homology have not been formally assessed in this context. This paper intends to bridge the gap between computational topology and graph machine learning by providing a brief introduction to persistent homology in the context of graphs, as well as a theoretical discussion and empirical analysis of its expressivity for graph learning tasks.
Scaling Supervised Local Learning with Augmented Auxiliary Networks
Deep neural networks are typically trained using global error signals that backpropagate (BP) end-to-end, which is not only biologically implausible but also suffers from the update locking problem and requires huge memory consumption. Local learning, which updates each layer independently with a gradient-isolated auxiliary network, offers a promising alternative to address the above problems. However, existing local learning methods are confronted with a large accuracy gap with the BP counterpart, particularly for large-scale networks. This is due to the weak coupling between local layers and their subsequent network layers, as there is no gradient communication across layers. To tackle this issue, we put forward an augmented local learning method, dubbed AugLocal. AugLocal constructs each hidden layer's auxiliary network by uniformly selecting a small subset of layers from its subsequent network layers to enhance their synergy. We also propose to linearly reduce the depth of auxiliary networks as the hidden layer goes deeper, ensuring sufficient network capacity while reducing the computational cost of auxiliary networks. Our extensive experiments on four image classification datasets (i.e., CIFAR-10, SVHN, STL-10, and ImageNet) demonstrate that AugLocal can effectively scale up to tens of local layers with a comparable accuracy to BP-trained networks while reducing GPU memory usage by around 40%. The proposed AugLocal method, therefore, opens up a myriad of opportunities for training high-performance deep neural networks on resource-constrained platforms.Code is available at https://github.com/ChenxiangMA/AugLocal.
Topological street-network characterization through feature-vector and cluster analysis
Complex networks provide a means to describe cities through their street mesh, expressing characteristics that refer to the structure and organization of an urban zone. Although other studies have used complex networks to model street meshes, we observed a lack of methods to characterize the relationship between cities by using their topological features. Accordingly, this paper aims to describe interactions between cities by using vectors of topological features extracted from their street meshes represented as complex networks. The methodology of this study is based on the use of digital maps. Over the computational representation of such maps, we extract global complex-network features that embody the characteristics of the cities. These vectors allow for the use of multidimensional projection and clustering techniques, enabling a similarity-based comparison of the street meshes. We experiment with 645 cities from the Brazilian state of Sao Paulo. Our results show how the joint of global features describes urban indicators that are deep-rooted in the network's topology and how they reveal characteristics and similarities among sets of cities that are separated from each other.
Homoclinic Floer homology via direct limits
Let (M omega) be a two dimensional symplectic manifold, phi: M to M a symplectomorphism with hyperbolic fixed point x and transversely intersecting stable and unstable manifolds W^s(phi, x) cap W^u(phi, x)=:H(phi, x). The intersection points are called homoclinic points, and the stable and unstable manifold are in this situation Lagrangian submanifolds. For this Lagrangian intersection problem with its infinite number of intersection points and wild oscillation behavior, we first define a Floer homology generated by finite sets of so-called contractible homoclinic points. This generalizes very significantly the Floer homologies generated by (semi)primary points defined by us in earlier works. Nevertheless these Floer homologies only consider quite `local' aspects of W^s(phi, x) cap W^u(phi, x) since their generator sets are finite, but the number of all contractible homoclinic points is infinite. To overcome this issue, we construct a direct limit of these `local' homoclinic Floer homologies over suitable index sets. These direct limits thus accumulate the information gathered by the finitely generated local' homoclinic Floer homologies.
Local heights on hyperelliptic curves and quadratic Chabauty
Local heights are arithmetic invariants used in the quadratic Chabauty method for determining the rational points on curves. We present an algorithm to compute these local heights for hyperelliptic curves at odd primes ellneq p. This algorithm significantly broadens the applicability of quadratic Chabauty to curves which were previously inaccessible due to the presence of non-trivial local heights. We provide numerous examples, including the first quadratic Chabauty computation for a curve having two primes with non-trivial local heights.
A Phenomenological Approach to Interactive Knot Diagrams
Knot diagrams are among the most common visual tools in topology. Computer programs now make it possible to draw, manipulate and render them digitally, which proves to be useful in knot theory teaching and research. Still, an openly available tool to manipulate knot diagrams in a real-time, interactive way is yet to be developed. We introduce a method of operating on the geometry of the knot diagram itself without any underlying three-dimensional structure that can underpin such an application. This allows us to directly interact with vector graphics knot diagrams while at the same time computing knot invariants in ways proposed by previous work. An implementation of this method is provided.
Topological Point Cloud Clustering
We present Topological Point Cloud Clustering (TPCC), a new method to cluster points in an arbitrary point cloud based on their contribution to global topological features. TPCC synthesizes desirable features from spectral clustering and topological data analysis and is based on considering the spectral properties of a simplicial complex associated to the considered point cloud. As it is based on considering sparse eigenvector computations, TPCC is similarly easy to interpret and implement as spectral clustering. However, by focusing not just on a single matrix associated to a graph created from the point cloud data, but on a whole set of Hodge-Laplacians associated to an appropriately constructed simplicial complex, we can leverage a far richer set of topological features to characterize the data points within the point cloud and benefit from the relative robustness of topological techniques against noise. We test the performance of TPCC on both synthetic and real-world data and compare it with classical spectral clustering.
Effective dimension of machine learning models
Making statements about the performance of trained models on tasks involving new data is one of the primary goals of machine learning, i.e., to understand the generalization power of a model. Various capacity measures try to capture this ability, but usually fall short in explaining important characteristics of models that we observe in practice. In this study, we propose the local effective dimension as a capacity measure which seems to correlate well with generalization error on standard data sets. Importantly, we prove that the local effective dimension bounds the generalization error and discuss the aptness of this capacity measure for machine learning models.
Adaptive Topological Feature via Persistent Homology: Filtration Learning for Point Clouds
Machine learning for point clouds has been attracting much attention, with many applications in various fields, such as shape recognition and material science. For enhancing the accuracy of such machine learning methods, it is often effective to incorporate global topological features, which are typically extracted by persistent homology. In the calculation of persistent homology for a point cloud, we choose a filtration for the point cloud, an increasing sequence of spaces. Since the performance of machine learning methods combined with persistent homology is highly affected by the choice of a filtration, we need to tune it depending on data and tasks. In this paper, we propose a framework that learns a filtration adaptively with the use of neural networks. In order to make the resulting persistent homology isometry-invariant, we develop a neural network architecture with such invariance. Additionally, we show a theoretical result on a finite-dimensional approximation of filtration functions, which justifies the proposed network architecture. Experimental results demonstrated the efficacy of our framework in several classification tasks.
Immersions of complexes of groups
Given a complex of groups, we construct a new class of complex of groups that records its local data and offer a functorial perspective on the statement that complexes of groups are locally developable. We also construct a new notion of an immersion of complexes of groups and establish that a locally isometric immersion of a complex of groups into a non-positively curved complex of groups is pi_1-injective. Furthermore, the domain complex of groups is developable and the induced map on geometric realizations of developments is an isometric embedding.
Graph Representation Learning for Road Type Classification
We present a novel learning-based approach to graph representations of road networks employing state-of-the-art graph convolutional neural networks. Our approach is applied to realistic road networks of 17 cities from Open Street Map. While edge features are crucial to generate descriptive graph representations of road networks, graph convolutional networks usually rely on node features only. We show that the highly representative edge features can still be integrated into such networks by applying a line graph transformation. We also propose a method for neighborhood sampling based on a topological neighborhood composed of both local and global neighbors. We compare the performance of learning representations using different types of neighborhood aggregation functions in transductive and inductive tasks and in supervised and unsupervised learning. Furthermore, we propose a novel aggregation approach, Graph Attention Isomorphism Network, GAIN. Our results show that GAIN outperforms state-of-the-art methods on the road type classification problem.
Pruning-based Topology Refinement of 3D Mesh using a 2D Alpha Mask
Image-based 3D reconstruction has increasingly stunning results over the past few years with the latest improvements in computer vision and graphics. Geometry and topology are two fundamental concepts when dealing with 3D mesh structures. But the latest often remains a side issue in the 3D mesh-based reconstruction literature. Indeed, performing per-vertex elementary displacements over a 3D sphere mesh only impacts its geometry and leaves the topological structure unchanged and fixed. Whereas few attempts propose to update the geometry and the topology, all need to lean on costly 3D ground-truth to determine the faces/edges to prune. We present in this work a method that aims to refine the topology of any 3D mesh through a face-pruning strategy that extensively relies upon 2D alpha masks and camera pose information. Our solution leverages a differentiable renderer that renders each face as a 2D soft map. Its pixel intensity reflects the probability of being covered during the rendering process by such a face. Based on the 2D soft-masks available, our method is thus able to quickly highlight all the incorrectly rendered faces for a given viewpoint. Because our module is agnostic to the network that produces the 3D mesh, it can be easily plugged into any self-supervised image-based (either synthetic or natural) 3D reconstruction pipeline to get complex meshes with a non-spherical topology.
Stable Vectorization of Multiparameter Persistent Homology using Signed Barcodes as Measures
Persistent homology (PH) provides topological descriptors for geometric data, such as weighted graphs, which are interpretable, stable to perturbations, and invariant under, e.g., relabeling. Most applications of PH focus on the one-parameter case -- where the descriptors summarize the changes in topology of data as it is filtered by a single quantity of interest -- and there is now a wide array of methods enabling the use of one-parameter PH descriptors in data science, which rely on the stable vectorization of these descriptors as elements of a Hilbert space. Although the multiparameter PH (MPH) of data that is filtered by several quantities of interest encodes much richer information than its one-parameter counterpart, the scarceness of stability results for MPH descriptors has so far limited the available options for the stable vectorization of MPH. In this paper, we aim to bring together the best of both worlds by showing how the interpretation of signed barcodes -- a recent family of MPH descriptors -- as signed measures leads to natural extensions of vectorization strategies from one parameter to multiple parameters. The resulting feature vectors are easy to define and to compute, and provably stable. While, as a proof of concept, we focus on simple choices of signed barcodes and vectorizations, we already see notable performance improvements when comparing our feature vectors to state-of-the-art topology-based methods on various types of data.
Topological Autoencoders
We propose a novel approach for preserving topological structures of the input space in latent representations of autoencoders. Using persistent homology, a technique from topological data analysis, we calculate topological signatures of both the input and latent space to derive a topological loss term. Under weak theoretical assumptions, we construct this loss in a differentiable manner, such that the encoding learns to retain multi-scale connectivity information. We show that our approach is theoretically well-founded and that it exhibits favourable latent representations on a synthetic manifold as well as on real-world image data sets, while preserving low reconstruction errors.
Architectures of Topological Deep Learning: A Survey on Topological Neural Networks
The natural world is full of complex systems characterized by intricate relations between their components: from social interactions between individuals in a social network to electrostatic interactions between atoms in a protein. Topological Deep Learning (TDL) provides a comprehensive framework to process and extract knowledge from data associated with these systems, such as predicting the social community to which an individual belongs or predicting whether a protein can be a reasonable target for drug development. TDL has demonstrated theoretical and practical advantages that hold the promise of breaking ground in the applied sciences and beyond. However, the rapid growth of the TDL literature has also led to a lack of unification in notation and language across Topological Neural Network (TNN) architectures. This presents a real obstacle for building upon existing works and for deploying TNNs to new real-world problems. To address this issue, we provide an accessible introduction to TDL, and compare the recently published TNNs using a unified mathematical and graphical notation. Through an intuitive and critical review of the emerging field of TDL, we extract valuable insights into current challenges and exciting opportunities for future development.
Topological Neural Networks go Persistent, Equivariant, and Continuous
Topological Neural Networks (TNNs) incorporate higher-order relational information beyond pairwise interactions, enabling richer representations than Graph Neural Networks (GNNs). Concurrently, topological descriptors based on persistent homology (PH) are being increasingly employed to augment the GNNs. We investigate the benefits of integrating these two paradigms. Specifically, we introduce TopNets as a broad framework that subsumes and unifies various methods in the intersection of GNNs/TNNs and PH such as (generalizations of) RePHINE and TOGL. TopNets can also be readily adapted to handle (symmetries in) geometric complexes, extending the scope of TNNs and PH to spatial settings. Theoretically, we show that PH descriptors can provably enhance the expressivity of simplicial message-passing networks. Empirically, (continuous and E(n)-equivariant extensions of) TopNets achieve strong performance across diverse tasks, including antibody design, molecular dynamics simulation, and drug property prediction.
Exploring Quantum Spacetime with Topological Data Analysis
In a novel application of the tools of topological data analysis (TDA) to nonperturbative quantum gravity, we introduce a new class of observables that allows us to assess whether quantum spacetime really resembles a ``quantum foam" near the Planck scale. The key idea is to investigate the Betti numbers of coarse-grained path integral histories, regularized in terms of dynamical triangulations, as a function of the coarse-graining scale. In two dimensions our analysis exhibits the well-known fractal structure of Euclidean quantum gravity.
Local Augmentation for Graph Neural Networks
Graph Neural Networks (GNNs) have achieved remarkable performance on graph-based tasks. The key idea for GNNs is to obtain informative representation through aggregating information from local neighborhoods. However, it remains an open question whether the neighborhood information is adequately aggregated for learning representations of nodes with few neighbors. To address this, we propose a simple and efficient data augmentation strategy, local augmentation, to learn the distribution of the node features of the neighbors conditioned on the central node's feature and enhance GNN's expressive power with generated features. Local augmentation is a general framework that can be applied to any GNN model in a plug-and-play manner. It samples feature vectors associated with each node from the learned conditional distribution as additional input for the backbone model at each training iteration. Extensive experiments and analyses show that local augmentation consistently yields performance improvement when applied to various GNN architectures across a diverse set of benchmarks. For example, experiments show that plugging in local augmentation to GCN and GAT improves by an average of 3.4\% and 1.6\% in terms of test accuracy on Cora, Citeseer, and Pubmed. Besides, our experimental results on large graphs (OGB) show that our model consistently improves performance over backbones. Code is available at https://github.com/SongtaoLiu0823/LAGNN.
On Coresets for Clustering in Small Dimensional Euclidean Spaces
We consider the problem of constructing small coresets for k-Median in Euclidean spaces. Given a large set of data points Psubset R^d, a coreset is a much smaller set Ssubset R^d, so that the k-Median costs of any k centers w.r.t. P and S are close. Existing literature mainly focuses on the high-dimension case and there has been great success in obtaining dimension-independent bounds, whereas the case for small d is largely unexplored. Considering many applications of Euclidean clustering algorithms are in small dimensions and the lack of systematic studies in the current literature, this paper investigates coresets for k-Median in small dimensions. For small d, a natural question is whether existing near-optimal dimension-independent bounds can be significantly improved. We provide affirmative answers to this question for a range of parameters. Moreover, new lower bound results are also proved, which are the highest for small d. In particular, we completely settle the coreset size bound for 1-d k-Median (up to log factors). Interestingly, our results imply a strong separation between 1-d 1-Median and 1-d 2-Median. As far as we know, this is the first such separation between k=1 and k=2 in any dimension.
Efficient and Scalable Graph Generation through Iterative Local Expansion
In the realm of generative models for graphs, extensive research has been conducted. However, most existing methods struggle with large graphs due to the complexity of representing the entire joint distribution across all node pairs and capturing both global and local graph structures simultaneously. To overcome these issues, we introduce a method that generates a graph by progressively expanding a single node to a target graph. In each step, nodes and edges are added in a localized manner through denoising diffusion, building first the global structure, and then refining the local details. The local generation avoids modeling the entire joint distribution over all node pairs, achieving substantial computational savings with subquadratic runtime relative to node count while maintaining high expressivity through multiscale generation. Our experiments show that our model achieves state-of-the-art performance on well-established benchmark datasets while successfully scaling to graphs with at least 5000 nodes. Our method is also the first to successfully extrapolate to graphs outside of the training distribution, showcasing a much better generalization capability over existing methods.
A Robust and Efficient Boundary Point Detection Method by Measuring Local Direction Dispersion
Boundary point detection aims to outline the external contour structure of clusters and enhance the inter-cluster discrimination, thus bolstering the performance of the downstream classification and clustering tasks. However, existing boundary point detectors are sensitive to density heterogeneity or cannot identify boundary points in concave structures and high-dimensional manifolds. In this work, we propose a robust and efficient boundary point detection method based on Local Direction Dispersion (LoDD). The core of boundary point detection lies in measuring the difference between boundary points and internal points. It is a common observation that an internal point is surrounded by its neighbors in all directions, while the neighbors of a boundary point tend to be distributed only in a certain directional range. By considering this observation, we adopt density-independent K-Nearest Neighbors (KNN) method to determine neighboring points and design a centrality metric LoDD using the eigenvalues of the covariance matrix to depict the distribution uniformity of KNN. We also develop a grid-structure assumption of data distribution to determine the parameters adaptively. The effectiveness of LoDD is demonstrated on synthetic datasets, real-world benchmarks, and application of training set split for deep learning model and hole detection on point cloud data. The datasets and toolkit are available at: https://github.com/ZPGuiGroupWhu/lodd.
Extrinsic systole of Seifert surfaces and distortion of knots
In 1983, Gromov introduced the notion of distortion of a knot, and asked if there are knots with arbitrarily large distortion. In 2011, Pardon proved that the distortion of T_{p,q} is at least min{p,q} up to a constant factor. We prove that the distortion of T_{p, p+1}# K is at least p up to a constant, independent of K. We also prove that any embedding of a minimal genus Seifert surface for T_{p,p+1}# K in R^3 has small extrinsic systole, in the sense that it contains a non-contractible loop with small R^3-diameter relative to the length of the knot. These results are related to combinatorial properties of the monodromy map associated to torus knots.
Haldane Bundles: A Dataset for Learning to Predict the Chern Number of Line Bundles on the Torus
Characteristic classes, which are abstract topological invariants associated with vector bundles, have become an important notion in modern physics with surprising real-world consequences. As a representative example, the incredible properties of topological insulators, which are insulators in their bulk but conductors on their surface, can be completely characterized by a specific characteristic class associated with their electronic band structure, the first Chern class. Given their importance to next generation computing and the computational challenge of calculating them using first-principles approaches, there is a need to develop machine learning approaches to predict the characteristic classes associated with a material system. To aid in this program we introduce the {Haldane bundle dataset}, which consists of synthetically generated complex line bundles on the 2-torus. We envision this dataset, which is not as challenging as noisy and sparsely measured real-world datasets but (as we show) still difficult for off-the-shelf architectures, to be a testing ground for architectures that incorporate the rich topological and geometric priors underlying characteristic classes.
A localized approach to generalized Turán problems
Generalized Tur\'an problems ask for the maximum number of copies of a graph H in an n-vertex, F-free graph, denoted by ex(n,H,F). We show how to extend the new, localized approach of Bradac, Malec, and Tompkins to generalized Tur\'{a}n problems. We weight the copies of H (typically taking H=K_t), instead of the edges, based on the size of the largest clique, path, or star containing the vertices of the copy of H, and in each case prove a tight upper bound on the sum of the weights. A consequence of our new localized theorems is an asymptotic determination of ex(n,H,K_{1,r}) for every H having at least one dominating vertex and mex(m,H,K_{1,r}) for every H having at least two dominating vertices.
Outlier-robust subsampling techniques for persistent homology
In recent years, persistent homology (PH) has been successfully applied to real-world data in many different settings. Despite significant computational advances, PH algorithms do not yet scale to large datasets preventing interesting applications. One approach to address computational issues posed by PH is to select a set of landmarks by subsampling from the data. Currently, these landmark points are chosen either at random or using the maxmin algorithm. Neither is ideal as random selection tends to favour dense areas of the data while the maxmin algorithm is very sensitive to noise. Here, we propose a novel approach to select landmarks specifically for PH that preserves coarse topological information of the original dataset. Our method is motivated by the Mayer-Vietoris sequence and requires only local PH computation thus enabling efficient computation. We test our landmarks on artificial datasets which contain different levels of noise and compare them to standard landmark selection techniques. We demonstrate that our landmark selection outperforms standard methods as well as a subsampling technique based on an outlier-robust version of the k--means algorithm for low sampling densities in noisy data with respect to robustness to outliers.
On the Topological Complexity of Maps
We define and develop a homotopy invariant notion for the topological complexity of a map f:X to Y, denoted TC(f), that interacts with TC(X) and TC(Y) in the same way cat(f) interacts with cat(X) and cat(Y). Furthermore, TC(f) and cat(f) satisfy the same inequalities as TC(X) and cat(X). We compare it to other invariants defined in the papers [15,16,17,18,20]. We apply TC(f) to studying group homomorphisms f:Hto G.
Convolutional Neural Networks on non-uniform geometrical signals using Euclidean spectral transformation
Convolutional Neural Networks (CNN) have been successful in processing data signals that are uniformly sampled in the spatial domain (e.g., images). However, most data signals do not natively exist on a grid, and in the process of being sampled onto a uniform physical grid suffer significant aliasing error and information loss. Moreover, signals can exist in different topological structures as, for example, points, lines, surfaces and volumes. It has been challenging to analyze signals with mixed topologies (for example, point cloud with surface mesh). To this end, we develop mathematical formulations for Non-Uniform Fourier Transforms (NUFT) to directly, and optimally, sample nonuniform data signals of different topologies defined on a simplex mesh into the spectral domain with no spatial sampling error. The spectral transform is performed in the Euclidean space, which removes the translation ambiguity from works on the graph spectrum. Our representation has four distinct advantages: (1) the process causes no spatial sampling error during the initial sampling, (2) the generality of this approach provides a unified framework for using CNNs to analyze signals of mixed topologies, (3) it allows us to leverage state-of-the-art backbone CNN architectures for effective learning without having to design a particular architecture for a particular data structure in an ad-hoc fashion, and (4) the representation allows weighted meshes where each element has a different weight (i.e., texture) indicating local properties. We achieve results on par with the state-of-the-art for the 3D shape retrieval task, and a new state-of-the-art for the point cloud to surface reconstruction task.
Revisiting Over-smoothing and Over-squashing Using Ollivier-Ricci Curvature
Graph Neural Networks (GNNs) had been demonstrated to be inherently susceptible to the problems of over-smoothing and over-squashing. These issues prohibit the ability of GNNs to model complex graph interactions by limiting their effectiveness in taking into account distant information. Our study reveals the key connection between the local graph geometry and the occurrence of both of these issues, thereby providing a unified framework for studying them at a local scale using the Ollivier-Ricci curvature. Specifically, we demonstrate that over-smoothing is linked to positive graph curvature while over-squashing is linked to negative graph curvature. Based on our theory, we propose the Batch Ollivier-Ricci Flow, a novel rewiring algorithm capable of simultaneously addressing both over-smoothing and over-squashing.
Optimize Any Topology: A Foundation Model for Shape- and Resolution-Free Structural Topology Optimization
Structural topology optimization (TO) is central to engineering design but remains computationally intensive due to complex physics and hard constraints. Existing deep-learning methods are limited to fixed square grids, a few hand-coded boundary conditions, and post-hoc optimization, preventing general deployment. We introduce Optimize Any Topology (OAT), a foundation-model framework that directly predicts minimum-compliance layouts for arbitrary aspect ratios, resolutions, volume fractions, loads, and fixtures. OAT combines a resolution- and shape-agnostic autoencoder with an implicit neural-field decoder and a conditional latent-diffusion model trained on OpenTO, a new corpus of 2.2 million optimized structures covering 2 million unique boundary-condition configurations. On four public benchmarks and two challenging unseen tests, OAT lowers mean compliance up to 90% relative to the best prior models and delivers sub-1 second inference on a single GPU across resolutions from 64 x 64 to 256 x 256 and aspect ratios as high as 10:1. These results establish OAT as a general, fast, and resolution-free framework for physics-aware topology optimization and provide a large-scale dataset to spur further research in generative modeling for inverse design. Code & data can be found at https://github.com/ahnobari/OptimizeAnyTopology.
Exploring Scaling Laws for Local SGD in Large Language Model Training
This paper investigates scaling laws for local SGD in LLM training, a distributed optimization algorithm that facilitates training on loosely connected devices. Through extensive experiments, we show that local SGD achieves competitive results compared to conventional methods, given equivalent model parameters, datasets, and computational resources. Furthermore, we explore the application of local SGD in various practical scenarios, including multi-cluster setups and edge computing environments. Our findings elucidate the necessary conditions for effective multi-cluster LLM training and examine the potential and limitations of leveraging edge computing resources in the LLM training process. This demonstrates its viability as an alternative to single large-cluster training.
Classifying Clustering Schemes
Many clustering schemes are defined by optimizing an objective function defined on the partitions of the underlying set of a finite metric space. In this paper, we construct a framework for studying what happens when we instead impose various structural conditions on the clustering schemes, under the general heading of functoriality. Functoriality refers to the idea that one should be able to compare the results of clustering algorithms as one varies the data set, for example by adding points or by applying functions to it. We show that within this framework, one can prove a theorems analogous to one of J. Kleinberg, in which for example one obtains an existence and uniqueness theorem instead of a non-existence result. We obtain a full classification of all clustering schemes satisfying a condition we refer to as excisiveness. The classification can be changed by varying the notion of maps of finite metric spaces. The conditions occur naturally when one considers clustering as the statistical version of the geometric notion of connected components. By varying the degree of functoriality that one requires from the schemes it is possible to construct richer families of clustering schemes that exhibit sensitivity to density.
Revisiting Link Prediction: A Data Perspective
Link prediction, a fundamental task on graphs, has proven indispensable in various applications, e.g., friend recommendation, protein analysis, and drug interaction prediction. However, since datasets span a multitude of domains, they could have distinct underlying mechanisms of link formation. Evidence in existing literature underscores the absence of a universally best algorithm suitable for all datasets. In this paper, we endeavor to explore principles of link prediction across diverse datasets from a data-centric perspective. We recognize three fundamental factors critical to link prediction: local structural proximity, global structural proximity, and feature proximity. We then unearth relationships among those factors where (i) global structural proximity only shows effectiveness when local structural proximity is deficient. (ii) The incompatibility can be found between feature and structural proximity. Such incompatibility leads to GNNs for Link Prediction (GNN4LP) consistently underperforming on edges where the feature proximity factor dominates. Inspired by these new insights from a data perspective, we offer practical instruction for GNN4LP model design and guidelines for selecting appropriate benchmark datasets for more comprehensive evaluations.
InvGC: Robust Cross-Modal Retrieval by Inverse Graph Convolution
Over recent decades, significant advancements in cross-modal retrieval are mainly driven by breakthroughs in visual and linguistic modeling. However, a recent study shows that multi-modal data representations tend to cluster within a limited convex cone (as representation degeneration problem), which hinders retrieval performance due to the inseparability of these representations. In our study, we first empirically validate the presence of the representation degeneration problem across multiple cross-modal benchmarks and methods. Next, to address it, we introduce a novel method, called InvGC, a post-processing technique inspired by graph convolution and average pooling. Specifically, InvGC defines the graph topology within the datasets and then applies graph convolution in a subtractive manner. This method effectively separates representations by increasing the distances between data points. To improve the efficiency and effectiveness of InvGC, we propose an advanced graph topology, LocalAdj, which only aims to increase the distances between each data point and its nearest neighbors. To understand why InvGC works, we present a detailed theoretical analysis, proving that the lower bound of recall will be improved after deploying InvGC. Extensive empirical results show that InvGC and InvGC w/LocalAdj significantly mitigate the representation degeneration problem, thereby enhancing retrieval performance. Our code is available at https://github.com/yimuwangcs/Better_Cross_Modal_Retrieval
Topological Obstructions to Autoencoding
Autoencoders have been proposed as a powerful tool for model-independent anomaly detection in high-energy physics. The operating principle is that events which do not belong to the space of training data will be reconstructed poorly, thus flagging them as anomalies. We point out that in a variety of examples of interest, the connection between large reconstruction error and anomalies is not so clear. In particular, for data sets with nontrivial topology, there will always be points that erroneously seem anomalous due to global issues. Conversely, neural networks typically have an inductive bias or prior to locally interpolate such that undersampled or rare events may be reconstructed with small error, despite actually being the desired anomalies. Taken together, these facts are in tension with the simple picture of the autoencoder as an anomaly detector. Using a series of illustrative low-dimensional examples, we show explicitly how the intrinsic and extrinsic topology of the dataset affects the behavior of an autoencoder and how this topology is manifested in the latent space representation during training. We ground this analysis in the discussion of a mock "bump hunt" in which the autoencoder fails to identify an anomalous "signal" for reasons tied to the intrinsic topology of n-particle phase space.
Fluctuations of the connectivity threshold and largest nearest-neighbour link
Consider a random uniform sample of n points in a compact region A of Euclidean d-space, d geq 2, with a smooth or (when d=2) polygonal boundary. Fix k bf N. Let T_{n,k} be the threshold r at which the geometric graph on these n vertices with distance parameter r becomes k-connected. We show that if d=2 then n (pi/|A|) T_{n,1}^2 - log n is asymptotically standard Gumbel. For (d,k) neq (2,1), it is n (theta_d/|A|) T_{n,k}^d - (2-2/d) log n - (4-2k-2/d) log log n that converges in distribution to a nondegenerate limit, where theta_d is the volume of the unit ball. The limit is Gumbel with scale parameter 2 except when (d,k)=(2,2) where the limit is two component extreme value distributed. The different cases reflect the fact that boundary effects are more more important in some cases than others. We also give similar results for the largest k-nearest neighbour link U_{n,k} in the sample, and show T_{n,k}=U_{n,k} with high probability. We provide estimates on rates of convergence and give similar results for Poisson samples in A. Finally, we give similar results even for non-uniform samples, with a less explicit sequence of centring constants.
Diffusion Variational Autoencoders
A standard Variational Autoencoder, with a Euclidean latent space, is structurally incapable of capturing topological properties of certain datasets. To remove topological obstructions, we introduce Diffusion Variational Autoencoders with arbitrary manifolds as a latent space. A Diffusion Variational Autoencoder uses transition kernels of Brownian motion on the manifold. In particular, it uses properties of the Brownian motion to implement the reparametrization trick and fast approximations to the KL divergence. We show that the Diffusion Variational Autoencoder is capable of capturing topological properties of synthetic datasets. Additionally, we train MNIST on spheres, tori, projective spaces, SO(3), and a torus embedded in R3. Although a natural dataset like MNIST does not have latent variables with a clear-cut topological structure, training it on a manifold can still highlight topological and geometrical properties.
New infinite families in the stable homotopy groups of spheres
We identify seven new 192-periodic infinite families of elements in the 2-primary stable homotopy groups of spheres. Although their Hurewicz image is trivial for topological modular forms, they remain nontrivial after T(2)- as well as K(2)-localization. We also obtain new information about 2-torsion and 2-divisibility of some of the previously known 192-periodic infinite families in the stable stems.
DeH4R: A Decoupled and Hybrid Method for Road Network Graph Extraction
The automated extraction of complete and precise road network graphs from remote sensing imagery remains a critical challenge in geospatial computer vision. Segmentation-based approaches, while effective in pixel-level recognition, struggle to maintain topology fidelity after vectorization postprocessing. Graph-growing methods build more topologically faithful graphs but suffer from computationally prohibitive iterative ROI cropping. Graph-generating methods first predict global static candidate road network vertices, and then infer possible edges between vertices. They achieve fast topology-aware inference, but limits the dynamic insertion of vertices. To address these challenges, we propose DeH4R, a novel hybrid model that combines graph-generating efficiency and graph-growing dynamics. This is achieved by decoupling the task into candidate vertex detection, adjacent vertex prediction, initial graph contruction, and graph expansion. This architectural innovation enables dynamic vertex (edge) insertions while retaining fast inference speed and enhancing both topology fidelity and spatial consistency. Comprehensive evaluations on CityScale and SpaceNet benchmarks demonstrate state-of-the-art (SOTA) performance. DeH4R outperforms the prior SOTA graph-growing method RNGDet++ by 4.62 APLS and 10.18 IoU on CityScale, while being approximately 10 times faster. The code will be made publicly available at https://github.com/7777777FAN/DeH4R.
Minimum Width of Leaky-ReLU Neural Networks for Uniform Universal Approximation
The study of universal approximation properties (UAP) for neural networks (NN) has a long history. When the network width is unlimited, only a single hidden layer is sufficient for UAP. In contrast, when the depth is unlimited, the width for UAP needs to be not less than the critical width w^*_{min}=max(d_x,d_y), where d_x and d_y are the dimensions of the input and output, respectively. Recently, cai2022achieve shows that a leaky-ReLU NN with this critical width can achieve UAP for L^p functions on a compact domain K, i.e., the UAP for L^p(K,R^{d_y}). This paper examines a uniform UAP for the function class C(K,R^{d_y}) and gives the exact minimum width of the leaky-ReLU NN as w_{min}=max(d_x+1,d_y)+1_{d_y=d_x+1}, which involves the effects of the output dimensions. To obtain this result, we propose a novel lift-flow-discretization approach that shows that the uniform UAP has a deep connection with topological theory.
Topological structure of complex predictions
Complex prediction models such as deep learning are the output from fitting machine learning, neural networks, or AI models to a set of training data. These are now standard tools in science. A key challenge with the current generation of models is that they are highly parameterized, which makes describing and interpreting the prediction strategies difficult. We use topological data analysis to transform these complex prediction models into pictures representing a topological view. The result is a map of the predictions that enables inspection. The methods scale up to large datasets across different domains and enable us to detect labeling errors in training data, understand generalization in image classification, and inspect predictions of likely pathogenic mutations in the BRCA1 gene.
Momentum Auxiliary Network for Supervised Local Learning
Deep neural networks conventionally employ end-to-end backpropagation for their training process, which lacks biological credibility and triggers a locking dilemma during network parameter updates, leading to significant GPU memory use. Supervised local learning, which segments the network into multiple local blocks updated by independent auxiliary networks. However, these methods cannot replace end-to-end training due to lower accuracy, as gradients only propagate within their local block, creating a lack of information exchange between blocks. To address this issue and establish information transfer across blocks, we propose a Momentum Auxiliary Network (MAN) that establishes a dynamic interaction mechanism. The MAN leverages an exponential moving average (EMA) of the parameters from adjacent local blocks to enhance information flow. This auxiliary network, updated through EMA, helps bridge the informational gap between blocks. Nevertheless, we observe that directly applying EMA parameters has certain limitations due to feature discrepancies among local blocks. To overcome this, we introduce learnable biases, further boosting performance. We have validated our method on four image classification datasets (CIFAR-10, STL-10, SVHN, ImageNet), attaining superior performance and substantial memory savings. Notably, our method can reduce GPU memory usage by more than 45\% on the ImageNet dataset compared to end-to-end training, while achieving higher performance. The Momentum Auxiliary Network thus offers a new perspective for supervised local learning. Our code is available at: https://github.com/JunhaoSu0/MAN.
A strictly monotone measure on tame sets that corresponds to a numerosity
Adapting standard methods from geometric measure theory, we provide an example of a polynomial-valued measure mu on tame sets in R^d which satisfies many desirable properties. Among these is strict monotonicity: the measure of a proper subset is strictly less than the measure of the whole set. Using techniques from non-standard analysis, we display that the domain of mu can be extended to all subsets of R^d (up to equivalence modulo infinitesimals). The resulting extension is a numerosity function that encodes the i-dimensional Hausdorff measure for all iin N, as well as the i-th intrinsic volume functions.
From Latent Graph to Latent Topology Inference: Differentiable Cell Complex Module
Latent Graph Inference (LGI) relaxed the reliance of Graph Neural Networks (GNNs) on a given graph topology by dynamically learning it. However, most of LGI methods assume to have a (noisy, incomplete, improvable, ...) input graph to rewire and can solely learn regular graph topologies. In the wake of the success of Topological Deep Learning (TDL), we study Latent Topology Inference (LTI) for learning higher-order cell complexes (with sparse and not regular topology) describing multi-way interactions between data points. To this aim, we introduce the Differentiable Cell Complex Module (DCM), a novel learnable function that computes cell probabilities in the complex to improve the downstream task. We show how to integrate DCM with cell complex message passing networks layers and train it in a end-to-end fashion, thanks to a two-step inference procedure that avoids an exhaustive search across all possible cells in the input, thus maintaining scalability. Our model is tested on several homophilic and heterophilic graph datasets and it is shown to outperform other state-of-the-art techniques, offering significant improvements especially in cases where an input graph is not provided.
Differentiability and Optimization of Multiparameter Persistent Homology
Real-valued functions on geometric data -- such as node attributes on a graph -- can be optimized using descriptors from persistent homology, allowing the user to incorporate topological terms in the loss function. When optimizing a single real-valued function (the one-parameter setting), there is a canonical choice of descriptor for persistent homology: the barcode. The operation mapping a real-valued function to its barcode is differentiable almost everywhere, and the convergence of gradient descent for losses using barcodes is relatively well understood. When optimizing a vector-valued function (the multiparameter setting), there is no unique choice of descriptor for multiparameter persistent homology, and many distinct descriptors have been proposed. This calls for the development of a general framework for differentiability and optimization that applies to a wide range of multiparameter homological descriptors. In this article, we develop such a framework and show that it encompasses well-known descriptors of different flavors, such as signed barcodes and the multiparameter persistence landscape. We complement the theory with numerical experiments supporting the idea that optimizing multiparameter homological descriptors can lead to improved performances compared to optimizing one-parameter descriptors, even when using the simplest and most efficiently computable multiparameter descriptors.
Visualizing Large-scale and High-dimensional Data
We study the problem of visualizing large-scale and high-dimensional data in a low-dimensional (typically 2D or 3D) space. Much success has been reported recently by techniques that first compute a similarity structure of the data points and then project them into a low-dimensional space with the structure preserved. These two steps suffer from considerable computational costs, preventing the state-of-the-art methods such as the t-SNE from scaling to large-scale and high-dimensional data (e.g., millions of data points and hundreds of dimensions). We propose the LargeVis, a technique that first constructs an accurately approximated K-nearest neighbor graph from the data and then layouts the graph in the low-dimensional space. Comparing to t-SNE, LargeVis significantly reduces the computational cost of the graph construction step and employs a principled probabilistic model for the visualization step, the objective of which can be effectively optimized through asynchronous stochastic gradient descent with a linear time complexity. The whole procedure thus easily scales to millions of high-dimensional data points. Experimental results on real-world data sets demonstrate that the LargeVis outperforms the state-of-the-art methods in both efficiency and effectiveness. The hyper-parameters of LargeVis are also much more stable over different data sets.
Deep Implicit Surface Point Prediction Networks
Deep neural representations of 3D shapes as implicit functions have been shown to produce high fidelity models surpassing the resolution-memory trade-off faced by the explicit representations using meshes and point clouds. However, most such approaches focus on representing closed shapes. Unsigned distance function (UDF) based approaches have been proposed recently as a promising alternative to represent both open and closed shapes. However, since the gradients of UDFs vanish on the surface, it is challenging to estimate local (differential) geometric properties like the normals and tangent planes which are needed for many downstream applications in vision and graphics. There are additional challenges in computing these properties efficiently with a low-memory footprint. This paper presents a novel approach that models such surfaces using a new class of implicit representations called the closest surface-point (CSP) representation. We show that CSP allows us to represent complex surfaces of any topology (open or closed) with high fidelity. It also allows for accurate and efficient computation of local geometric properties. We further demonstrate that it leads to efficient implementation of downstream algorithms like sphere-tracing for rendering the 3D surface as well as to create explicit mesh-based representations. Extensive experimental evaluation on the ShapeNet dataset validate the above contributions with results surpassing the state-of-the-art.
The Topology and Geometry of Neural Representations
A central question for neuroscience is how to characterize brain representations of perceptual and cognitive content. An ideal characterization should distinguish different functional regions with robustness to noise and idiosyncrasies of individual brains that do not correspond to computational differences. Previous studies have characterized brain representations by their representational geometry, which is defined by the representational dissimilarity matrix (RDM), a summary statistic that abstracts from the roles of individual neurons (or responses channels) and characterizes the discriminability of stimuli. Here we explore a further step of abstraction: from the geometry to the topology of brain representations. We propose topological representational similarity analysis (tRSA), an extension of representational similarity analysis (RSA) that uses a family of geo-topological summary statistics that generalizes the RDM to characterize the topology while de-emphasizing the geometry. We evaluate this new family of statistics in terms of the sensitivity and specificity for model selection using both simulations and functional MRI (fMRI) data. In the simulations, the ground truth is a data-generating layer representation in a neural network model and the models are the same and other layers in different model instances (trained from different random seeds). In fMRI, the ground truth is a visual area and the models are the same and other areas measured in different subjects. Results show that topology-sensitive characterizations of population codes are robust to noise and interindividual variability and maintain excellent sensitivity to the unique representational signatures of different neural network layers and brain regions.
Untangling Gaussian Mixtures
Tangles were originally introduced as a concept to formalize regions of high connectivity in graphs. In recent years, they have also been discovered as a link between structural graph theory and data science: when interpreting similarity in data sets as connectivity between points, finding clusters in the data essentially amounts to finding tangles in the underlying graphs. This paper further explores the potential of tangles in data sets as a means for a formal study of clusters. Real-world data often follow a normal distribution. Accounting for this, we develop a quantitative theory of tangles in data sets drawn from Gaussian mixtures. To this end, we equip the data with a graph structure that models similarity between the points and allows us to apply tangle theory to the data. We provide explicit conditions under which tangles associated with the marginal Gaussian distributions exist asymptotically almost surely. This can be considered as a sufficient formal criterion for the separabability of clusters in the data.
Persistent-Homology-based Machine Learning and its Applications -- A Survey
A suitable feature representation that can both preserve the data intrinsic information and reduce data complexity and dimensionality is key to the performance of machine learning models. Deeply rooted in algebraic topology, persistent homology (PH) provides a delicate balance between data simplification and intrinsic structure characterization, and has been applied to various areas successfully. However, the combination of PH and machine learning has been hindered greatly by three challenges, namely topological representation of data, PH-based distance measurements or metrics, and PH-based feature representation. With the development of topological data analysis, progresses have been made on all these three problems, but widely scattered in different literatures. In this paper, we provide a systematical review of PH and PH-based supervised and unsupervised models from a computational perspective. Our emphasizes are the recent development of mathematical models and tools, including PH softwares and PH-based functions, feature representations, kernels, and similarity models. Essentially, this paper can work as a roadmap for the practical application of PH-based machine learning tools. Further, we consider different topological feature representations in different machine learning models, and investigate their impacts on the protein secondary structure classification.
TopoMLP: A Simple yet Strong Pipeline for Driving Topology Reasoning
Topology reasoning aims to comprehensively understand road scenes and present drivable routes in autonomous driving. It requires detecting road centerlines (lane) and traffic elements, further reasoning their topology relationship, i.e., lane-lane topology, and lane-traffic topology. In this work, we first present that the topology score relies heavily on detection performance on lane and traffic elements. Therefore, we introduce a powerful 3D lane detector and an improved 2D traffic element detector to extend the upper limit of topology performance. Further, we propose TopoMLP, a simple yet high-performance pipeline for driving topology reasoning. Based on the impressive detection performance, we develop two simple MLP-based heads for topology generation. TopoMLP achieves state-of-the-art performance on OpenLane-V2 benchmark, i.e., 41.2% OLS with ResNet-50 backbone. It is also the 1st solution for 1st OpenLane Topology in Autonomous Driving Challenge. We hope such simple and strong pipeline can provide some new insights to the community. Code is at https://github.com/wudongming97/TopoMLP.
Volumes of Nullhomotopies in Nilpotent Spaces
The Shadowing Principle of Manin has proved a valuable tool for addressing questions of quantitative topology raised by Gromov in the late 1900s. The principle informally provides a way for bounded algebraic maps between differential graded algebras to be translated into nearby genuine maps between their geometric realizations. We extend this principle to finite towers of principal K(G,n) fibrations, and in particular apply this construction to nilpotent spaces. As a specific application of the extended principle, we provide upper bounds on the asymptotic behavior of volumes of nullhomotopies of Lipschitz maps into nilpotent spaces. We further refine these bounds in the case when c = 1 to nearly meet those of the simply connected setting. We similarly refine these bounds in the event the target space is coformal, and demonstrate that the bounds in this setting are nearly sharp.
Towards Quantifying Long-Range Interactions in Graph Machine Learning: a Large Graph Dataset and a Measurement
Long-range dependencies are critical for effective graph representation learning, yet most existing datasets focus on small graphs tailored to inductive tasks, offering limited insight into long-range interactions. Current evaluations primarily compare models employing global attention (e.g., graph transformers) with those using local neighborhood aggregation (e.g., message-passing neural networks) without a direct measurement of long-range dependency. In this work, we introduce City-Networks, a novel large-scale transductive learning dataset derived from real-world city roads. This dataset features graphs with over 10^5 nodes and significantly larger diameters than those in existing benchmarks, naturally embodying long-range information. We annotate the graphs using an eccentricity-based approach, ensuring that the classification task inherently requires information from distant nodes. Furthermore, we propose a model-agnostic measurement based on the Jacobians of neighbors from distant hops, offering a principled quantification of long-range dependencies. Finally, we provide theoretical justifications for both our dataset design and the proposed measurement - particularly by focusing on over-smoothing and influence score dilution - which establishes a robust foundation for further exploration of long-range interactions in graph neural networks.
Asynchronous Local-SGD Training for Language Modeling
Local stochastic gradient descent (Local-SGD), also referred to as federated averaging, is an approach to distributed optimization where each device performs more than one SGD update per communication. This work presents an empirical study of {\it asynchronous} Local-SGD for training language models; that is, each worker updates the global parameters as soon as it has finished its SGD steps. We conduct a comprehensive investigation by examining how worker hardware heterogeneity, model size, number of workers, and optimizer could impact the learning performance. We find that with naive implementations, asynchronous Local-SGD takes more iterations to converge than its synchronous counterpart despite updating the (global) model parameters more frequently. We identify momentum acceleration on the global parameters when worker gradients are stale as a key challenge. We propose a novel method that utilizes a delayed Nesterov momentum update and adjusts the workers' local training steps based on their computation speed. This approach, evaluated with models up to 150M parameters on the C4 dataset, matches the performance of synchronous Local-SGD in terms of perplexity per update step, and significantly surpasses it in terms of wall clock time.
TopoMortar: A dataset to evaluate image segmentation methods focused on topology accuracy
We present TopoMortar, a brick wall dataset that is the first dataset specifically designed to evaluate topology-focused image segmentation methods, such as topology loss functions. TopoMortar enables to investigate in two ways whether methods incorporate prior topological knowledge. First, by eliminating challenges seen in real-world data, such as small training set, noisy labels, and out-of-distribution test-set images, that, as we show, impact the effectiveness of topology losses. Second, by allowing to assess in the same dataset topology accuracy across dataset challenges, isolating dataset-related effects from the effect of incorporating prior topological knowledge. In these two experiments, it is deliberately difficult to improve topology accuracy without actually using topology information, thus, permitting to attribute an improvement in topology accuracy to the incorporation of prior topological knowledge. To this end, TopoMortar includes three types of labels (accurate, noisy, pseudo-labels), two fixed training sets (large and small), and in-distribution and out-of-distribution test-set images. We compared eight loss functions on TopoMortar, and we found that clDice achieved the most topologically accurate segmentations, Skeleton Recall loss performed best particularly with noisy labels, and the relative advantageousness of the other loss functions depended on the experimental setting. Additionally, we show that simple methods, such as data augmentation and self-distillation, can elevate Cross entropy Dice loss to surpass most topology loss functions, and that those simple methods can enhance topology loss functions as well. clDice and Skeleton Recall loss, both skeletonization-based loss functions, were also the fastest to train, making this type of loss function a promising research direction. TopoMortar and our code can be found at https://github.com/jmlipman/TopoMortar
Combining relatively hyperbolic groups over a complex of groups
Given a complex of groups G(Y) = (G_sigma, psi_a, g_{a,b}) where all G_sigma are relatively hyperbolic, the psi_a are inclusions of full relatively quasiconvex subgroups, and the universal cover X is CAT(0) and delta--hyperbolic, we show pi_1(G(Y)) is relatively hyperbolic. The proof extends the work of Dahmani and Martin by constructing a model for the Bowditch boundary of pi_1(G(Y)). We prove the model is a compact metrizable space on which G acts as a geometrically finite convergence group, and a theorem of Yaman then implies the result. More generally, this model shows how any suitable action of a relatively hyperbolic group on a simply connected cell complex encodes a decomposition of the Bowditch boundary into the boundary of the cell complex and the boundaries of cell stabilizers. We hope this decomposition will be helpful in answering topological questions about Bowditch boundaries.
Neural Link Prediction with Walk Pooling
Graph neural networks achieve high accuracy in link prediction by jointly leveraging graph topology and node attributes. Topology, however, is represented indirectly; state-of-the-art methods based on subgraph classification label nodes with distance to the target link, so that, although topological information is present, it is tempered by pooling. This makes it challenging to leverage features like loops and motifs associated with network formation mechanisms. We propose a link prediction algorithm based on a new pooling scheme called WalkPool. WalkPool combines the expressivity of topological heuristics with the feature-learning ability of neural networks. It summarizes a putative link by random walk probabilities of adjacent paths. Instead of extracting transition probabilities from the original graph, it computes the transition matrix of a "predictive" latent graph by applying attention to learned features; this may be interpreted as feature-sensitive topology fingerprinting. WalkPool can leverage unsupervised node features or be combined with GNNs and trained end-to-end. It outperforms state-of-the-art methods on all common link prediction benchmarks, both homophilic and heterophilic, with and without node attributes. Applying WalkPool to a set of unsupervised GNNs significantly improves prediction accuracy, suggesting that it may be used as a general-purpose graph pooling scheme.
BOAT: Bilateral Local Attention Vision Transformer
Vision Transformers achieved outstanding performance in many computer vision tasks. Early Vision Transformers such as ViT and DeiT adopt global self-attention, which is computationally expensive when the number of patches is large. To improve efficiency, recent Vision Transformers adopt local self-attention mechanisms, where self-attention is computed within local windows. Despite the fact that window-based local self-attention significantly boosts efficiency, it fails to capture the relationships between distant but similar patches in the image plane. To overcome this limitation of image-space local attention, in this paper, we further exploit the locality of patches in the feature space. We group the patches into multiple clusters using their features, and self-attention is computed within every cluster. Such feature-space local attention effectively captures the connections between patches across different local windows but still relevant. We propose a Bilateral lOcal Attention vision Transformer (BOAT), which integrates feature-space local attention with image-space local attention. We further integrate BOAT with both Swin and CSWin models, and extensive experiments on several benchmark datasets demonstrate that our BOAT-CSWin model clearly and consistently outperforms existing state-of-the-art CNN models and vision Transformers.
Dynamic Graph CNN for Learning on Point Clouds
Point clouds provide a flexible geometric representation suitable for countless applications in computer graphics; they also comprise the raw output of most 3D data acquisition devices. While hand-designed features on point clouds have long been proposed in graphics and vision, however, the recent overwhelming success of convolutional neural networks (CNNs) for image analysis suggests the value of adapting insight from CNN to the point cloud world. Point clouds inherently lack topological information so designing a model to recover topology can enrich the representation power of point clouds. To this end, we propose a new neural network module dubbed EdgeConv suitable for CNN-based high-level tasks on point clouds including classification and segmentation. EdgeConv acts on graphs dynamically computed in each layer of the network. It is differentiable and can be plugged into existing architectures. Compared to existing modules operating in extrinsic space or treating each point independently, EdgeConv has several appealing properties: It incorporates local neighborhood information; it can be stacked applied to learn global shape properties; and in multi-layer systems affinity in feature space captures semantic characteristics over potentially long distances in the original embedding. We show the performance of our model on standard benchmarks including ModelNet40, ShapeNetPart, and S3DIS.
Transitivities of maps of generalized topological spaces
In this work, we present several new findings regarding the concepts of orbit-transitivity, strict orbit-transitivity, ω-transitivity, and μ-open-set transitivity for self-maps on generalized topological spaces. Let (X,μ) denote a generalized topological space. A point x in X is said to be quasi-μ-isolated if there exists a μ-open set U such that x in U and i_μ(U setminus c_μ({x})) = emptyset. We prove that x is a quasi-μ-isolated point of X precisely when there exists a μ-dense subset D of X for which x is a μ_D-isolated point of D. Moreover, in the case where X has no quasi-μ-isolated points, we establish that a map f: X to X is orbit-transitive (or strictly orbit-transitive) if and only if it is ω-transitive.
Barycentric Subspace Analysis on Manifolds
This paper investigates the generalization of Principal Component Analysis (PCA) to Riemannian manifolds. We first propose a new and general type of family of subspaces in manifolds that we call barycentric subspaces. They are implicitly defined as the locus of points which are weighted means of k+1 reference points. As this definition relies on points and not on tangent vectors, it can also be extended to geodesic spaces which are not Riemannian. For instance, in stratified spaces, it naturally allows principal subspaces that span several strata, which is impossible in previous generalizations of PCA. We show that barycentric subspaces locally define a submanifold of dimension k which generalizes geodesic subspaces.Second, we rephrase PCA in Euclidean spaces as an optimization on flags of linear subspaces (a hierarchy of properly embedded linear subspaces of increasing dimension). We show that the Euclidean PCA minimizes the Accumulated Unexplained Variances by all the subspaces of the flag (AUV). Barycentric subspaces are naturally nested, allowing the construction of hierarchically nested subspaces. Optimizing the AUV criterion to optimally approximate data points with flags of affine spans in Riemannian manifolds lead to a particularly appealing generalization of PCA on manifolds called Barycentric Subspaces Analysis (BSA).
Topology-Aware Latent Diffusion for 3D Shape Generation
We introduce a new generative model that combines latent diffusion with persistent homology to create 3D shapes with high diversity, with a special emphasis on their topological characteristics. Our method involves representing 3D shapes as implicit fields, then employing persistent homology to extract topological features, including Betti numbers and persistence diagrams. The shape generation process consists of two steps. Initially, we employ a transformer-based autoencoding module to embed the implicit representation of each 3D shape into a set of latent vectors. Subsequently, we navigate through the learned latent space via a diffusion model. By strategically incorporating topological features into the diffusion process, our generative module is able to produce a richer variety of 3D shapes with different topological structures. Furthermore, our framework is flexible, supporting generation tasks constrained by a variety of inputs, including sparse and partial point clouds, as well as sketches. By modifying the persistence diagrams, we can alter the topology of the shapes generated from these input modalities.
Geometry of Sample Spaces
In statistics, independent, identically distributed random samples do not carry a natural ordering, and their statistics are typically invariant with respect to permutations of their order. Thus, an n-sample in a space M can be considered as an element of the quotient space of M^n modulo the permutation group. The present paper takes this definition of sample space and the related concept of orbit types as a starting point for developing a geometric perspective on statistics. We aim at deriving a general mathematical setting for studying the behavior of empirical and population means in spaces ranging from smooth Riemannian manifolds to general stratified spaces. We fully describe the orbifold and path-metric structure of the sample space when M is a manifold or path-metric space, respectively. These results are non-trivial even when M is Euclidean. We show that the infinite sample space exists in a Gromov-Hausdorff type sense and coincides with the Wasserstein space of probability distributions on M. We exhibit Fr\'echet means and k-means as metric projections onto 1-skeleta or k-skeleta in Wasserstein space, and we define a new and more general notion of polymeans. This geometric characterization via metric projections applies equally to sample and population means, and we use it to establish asymptotic properties of polymeans such as consistency and asymptotic normality.
A Heegaard-Floer TQFT for link cobordisms
We introduce a Heegaard-Floer homology functor from the category of oriented links in closed 3-manifolds and oriented surface cobordisms in 4-manifolds connecting them to the category of F[v]-modules and F[v]-homomorphisms between them, where F is the field with two elements. In comparison with previously defined TQFTs for decorated links and link cobordisms, the construction of this paper has the advantage of being independent from the decoration. Some of the basic properties of this functor are also explored.
Jets of foliations and b^k-algebroids
In this article, we introduce and study singular foliations of b^k-type. These singular foliations formalize the properties of vector fields that are tangent to order k along a submanifold W subset M. Our first result is a classification of these foliations, relating them to geometric structures defined in a formal neighborhood of the submanifold, such as jets of distributions that are involutive up to order k-1. When W is a hypersurface, singular foliations of b^k-type are Lie algebroids. In this particular case, they are generalizations of the b^k-tangent bundles introduced by Scott. Indeed, they are always locally isomorphic to b^k-tangent bundles, but globally such an isomorphism is obstructed by a holonomy invariant. Our second main result is a Riemann-Hilbert-style classification of singular foliations of b^k-type in terms of holonomy representations. In this paper, we study singular foliations of b^k-type from several different perspectives. In particular: (1) We study the problem of extending a k-th-order foliation to a (k+1)-th order foliation and prove that this is obstructed by a characteristic class. (2) When W is a hypersurface, we give a detailed study of algebroid differential forms and extend Scott's calculation of the cohomology. (3) We study algebroid symplectic forms in terms of the geometric structures induced on W. In particular, we find that there is a close relationship between the above obstruction class for extensions and the symplectic variation of the symplectic foliation induced on W.
Theoretical analysis and computation of the sample Frechet mean for sets of large graphs based on spectral information
To characterize the location (mean, median) of a set of graphs, one needs a notion of centrality that is adapted to metric spaces, since graph sets are not Euclidean spaces. A standard approach is to consider the Frechet mean. In this work, we equip a set of graphs with the pseudometric defined by the norm between the eigenvalues of their respective adjacency matrix. Unlike the edit distance, this pseudometric reveals structural changes at multiple scales, and is well adapted to studying various statistical problems for graph-valued data. We describe an algorithm to compute an approximation to the sample Frechet mean of a set of undirected unweighted graphs with a fixed size using this pseudometric.
Probing Invisible Decay of Z^prime at Muon Collider with Topological Data Analysis and Machine Learning
We explore the use of topological data analysis (TDA) combined with machine learning for discriminating standard model backgrounds from the invisible decay of the Z^prime boson associated with monophoton emission at a 3 TeV muon collider. Reconstructed events are mapped into a six-dimensional kinematic space and aggregated into bags of events, from which persistent homology is used to extract Betti number distributions. Within the Multiple Instance Learning paradigm, classifiers trained on these topological descriptors demonstrate significantly improved classification accuracy compared to the conventional ML approaches based on event-wise kinematic inputs. We also draw exclusion contours at 95\% CL in the (m_{Z^prime}, m_chi) parameter space, highlighting the potential of topological features to extend the discovery reach of future collider experiments.
Learning to Route in Similarity Graphs
Recently similarity graphs became the leading paradigm for efficient nearest neighbor search, outperforming traditional tree-based and LSH-based methods. Similarity graphs perform the search via greedy routing: a query traverses the graph and in each vertex moves to the adjacent vertex that is the closest to this query. In practice, similarity graphs are often susceptible to local minima, when queries do not reach its nearest neighbors, getting stuck in suboptimal vertices. In this paper we propose to learn the routing function that overcomes local minima via incorporating information about the graph global structure. In particular, we augment the vertices of a given graph with additional representations that are learned to provide the optimal routing from the start vertex to the query nearest neighbor. By thorough experiments, we demonstrate that the proposed learnable routing successfully diminishes the local minima problem and significantly improves the overall search performance.
Understanding networks and their behaviors using sheaf theory
Many complicated network problems can be easily understood on small networks. Difficulties arise when small networks are combined into larger ones. Fortunately, the mathematical theory of sheaves was constructed to address just this kind of situation; it extends locally-defined structures to globally valid inferences by way of consistency relations. This paper exhibits examples in network monitoring and filter hardware where sheaves have useful descriptive power.
Scaling Properties of Avalanche Activity in the Two-Dimensional Abelian Sandpile Model
We study the scaling properties of avalanche activity in the two-dimensional Abelian sandpile model. Instead of the conventional avalanche size distribution, we analyze the site activity distribution, which measures how often a site participates in avalanches when grains are added across the lattice. Using numerical simulations for system sizes up to \(L = 160\), averaged over \(10^4\) configurations, we determine the probability distribution \(P(A, L)\) of site activities. The results show that \(P(A, L)\) follows a finite-size scaling form \[ P(A, L) \sim L^{-2} F\Big(A{L^2}\Big). \] For small values \(A \ll L^2\) the scaling function behaves as \[ F(u) \sim u^{-1/2}, \quad corresponding to \quad P(A) \sim 1{L}, \] while for large activities \(A \sim O(L^2)\) the distribution decays as \[ F(u) \sim \exp\big(-c_3 u - c_4 u^2\big). \] The crossover between these two regimes occurs at \[ A^* \sim 0.1 \, L^2, \] marking the threshold between typical and highly excitable sites. This characterization of local avalanche activity provides complementary information to the usual avalanche size statistics, highlighting how local regions serve as frequent conduits for critical dynamics. These results may help connect sandpile models to real-world self-organized critical systems where only partial local activity can be observed.
A Quadratic Synchronization Rule for Distributed Deep Learning
In distributed deep learning with data parallelism, synchronizing gradients at each training step can cause a huge communication overhead, especially when many nodes work together to train large models. Local gradient methods, such as Local SGD, address this issue by allowing workers to compute locally for H steps without synchronizing with others, hence reducing communication frequency. While H has been viewed as a hyperparameter to trade optimization efficiency for communication cost, recent research indicates that setting a proper H value can lead to generalization improvement. Yet, selecting a proper H is elusive. This work proposes a theory-grounded method for determining H, named the Quadratic Synchronization Rule (QSR), which recommends dynamically setting H in proportion to 1{eta^2} as the learning rate eta decays over time. Extensive ImageNet experiments on ResNet and ViT show that local gradient methods with QSR consistently improve the test accuracy over other synchronization strategies. Compared with the standard data parallel training, QSR enables Local AdamW on ViT-B to cut the training time on 16 or 64 GPUs down from 26.7 to 20.2 hours or from 8.6 to 5.5 hours and, at the same time, achieves 1.16% or 0.84% higher top-1 validation accuracy.
Holistic Geometric Feature Learning for Structured Reconstruction
The inference of topological principles is a key problem in structured reconstruction. We observe that wrongly predicted topological relationships are often incurred by the lack of holistic geometry clues in low-level features. Inspired by the fact that massive signals can be compactly described with frequency analysis, we experimentally explore the efficiency and tendency of learning structure geometry in the frequency domain. Accordingly, we propose a frequency-domain feature learning strategy (F-Learn) to fuse scattered geometric fragments holistically for topology-intact structure reasoning. Benefiting from the parsimonious design, the F-Learn strategy can be easily deployed into a deep reconstructor with a lightweight model modification. Experiments demonstrate that the F-Learn strategy can effectively introduce structure awareness into geometric primitive detection and topology inference, bringing significant performance improvement to final structured reconstruction. Code and pre-trained models are available at https://github.com/Geo-Tell/F-Learn.
Automorphisms and subdivisions of Helly graphs
We study Helly graphs of finite combinatorial dimension, i.e. whose injective hull is finite-dimensional. We describe very simple fine simplicial subdivisions of the injective hull of a Helly graph, following work of Lang. We also give a very explicit simplicial model of the injective hull of a Helly graphs, in terms of cliques which are intersections of balls. We use these subdivisions to prove that any automorphism of a Helly graph with finite combinatorial dimension is either elliptic or hyperbolic. Moreover, every such hyperbolic automorphism has an axis in an appropriate Helly subdivision, and its translation length is rational with uniformly bounded denominator.
On κ-solutions and canonical neighborhoods in 4d Ricci flow
We introduce a classification conjecture for kappa-solutions in 4d Ricci flow. Our conjectured list includes known examples from the literature, but also a new 1-parameter family of Z_2^2times O_3-symmetric bubble-sheet ovals that we construct. We observe that some special cases of the conjecture follow from recent results in the literature. We also introduce a stronger variant of the classification conjecture for ancient asymptotically cylindrical 4d Ricci flows, which does not assume smoothness and nonnegative curvature operator a priori. Assuming this stronger variant holds true, we establish a canonical neighborhood theorem for 4d Ricci flow through cylindrical singularities, which shares some elements in common with Perelman's canonical neighborhood theorem for 3d Ricci flow as well as the mean-convex neighborhood theorem for mean curvature flow through neck-singularities. Finally, we argue that quotient-necks lead to new phenomena, and sketch an example of non-uniqueness for 4d Ricci flow through singularities.
Local Learning on Transformers via Feature Reconstruction
Transformers are becoming increasingly popular due to their superior performance over conventional convolutional neural networks(CNNs). However, transformers usually require a much larger amount of memory to train than CNNs, which prevents their application in many low resource settings. Local learning, which divides the network into several distinct modules and trains them individually, is a promising alternative to the end-to-end (E2E) training approach to reduce the amount of memory for training and to increase parallelism. This paper is the first to apply Local Learning on transformers for this purpose. The standard CNN-based local learning method, InfoPro [32], reconstructs the input images for each module in a CNN. However, reconstructing the entire image does not generalize well. In this paper, we propose a new mechanism for each local module, where instead of reconstructing the entire image, we reconstruct its input features, generated from previous modules. We evaluate our approach on 4 commonly used datasets and 3 commonly used decoder structures on Swin-Tiny. The experiments show that our approach outperforms InfoPro-Transformer, the InfoPro with Transfomer backbone we introduced, by at up to 0.58% on CIFAR-10, CIFAR-100, STL-10 and SVHN datasets, while using up to 12% less memory. Compared to the E2E approach, we require 36% less GPU memory when the network is divided into 2 modules and 45% less GPU memory when the network is divided into 4 modules.
Locally resolvable BIBDs and generalized quadrangles with ovoids
In this note we establish a 1-to-1 correspondence between the class of generalized quadrangles with ovoids and the class of balanced incomplete block designs that posses a non-triangular local resolution system and have the appropriate parameters. We present a non-triangular local resolution system for a difference family BIBD construction of Sprott.
Self-Supervised Learning of Graph Representations for Network Intrusion Detection
Detecting intrusions in network traffic is a challenging task, particularly under limited supervision and constantly evolving attack patterns. While recent works have leveraged graph neural networks for network intrusion detection, they often decouple representation learning from anomaly detection, limiting the utility of the embeddings for identifying attacks. We propose GraphIDS, a self-supervised intrusion detection model that unifies these two stages by learning local graph representations of normal communication patterns through a masked autoencoder. An inductive graph neural network embeds each flow with its local topological context to capture typical network behavior, while a Transformer-based encoder-decoder reconstructs these embeddings, implicitly learning global co-occurrence patterns via self-attention without requiring explicit positional information. During inference, flows with unusually high reconstruction errors are flagged as potential intrusions. This end-to-end framework ensures that embeddings are directly optimized for the downstream task, facilitating the recognition of malicious traffic. On diverse NetFlow benchmarks, GraphIDS achieves up to 99.98% PR-AUC and 99.61% macro F1-score, outperforming baselines by 5-25 percentage points.
Do Not Escape From the Manifold: Discovering the Local Coordinates on the Latent Space of GANs
The discovery of the disentanglement properties of the latent space in GANs motivated a lot of research to find the semantically meaningful directions on it. In this paper, we suggest that the disentanglement property is closely related to the geometry of the latent space. In this regard, we propose an unsupervised method for finding the semantic-factorizing directions on the intermediate latent space of GANs based on the local geometry. Intuitively, our proposed method, called Local Basis, finds the principal variation of the latent space in the neighborhood of the base latent variable. Experimental results show that the local principal variation corresponds to the semantic factorization and traversing along it provides strong robustness to image traversal. Moreover, we suggest an explanation for the limited success in finding the global traversal directions in the latent space, especially W-space of StyleGAN2. We show that W-space is warped globally by comparing the local geometry, discovered from Local Basis, through the metric on Grassmannian Manifold. The global warpage implies that the latent space is not well-aligned globally and therefore the global traversal directions are bound to show limited success on it.
A Test for Jumps in Metric-Space Conditional Means
Standard methods for detecting discontinuities in conditional means are not applicable to outcomes that are complex, non-Euclidean objects like distributions, networks, or covariance matrices. This article develops a nonparametric test for jumps in conditional means when outcomes lie in a non-Euclidean metric space. Using local Fr\'echet regressionx2014which generalizes standard regression to metric-space valued datax2014the method estimates a mean path on either side of a candidate cutoff, extending existing k-sample tests to a flexible regression setting. Key theoretical contributions include a central limit theorem for the local estimator of the conditional Fr\'echet variance and the asymptotic validity and consistency of the proposed test. Simulations confirm nominal size control and robust power in finite samples. Two applications demonstrate the method's value by revealing effects invisible to scalar-based tests. First, I detect a sharp change in work-from-home compositions at Washington State's income threshold for non-compete enforceability during COVID-19, highlighting remote work's role as a bargaining margin. Second, I find that countries restructure their input-output networks after losing preferential US trade access. These findings underscore that analyzing regression functions within their native metric spaces can reveal structural discontinuities that scalar summaries would miss.
Topological Quantum Compilation Using Mixed-Integer Programming
We introduce the Mixed-Integer Quadratically Constrained Quadratic Programming framework for the quantum compilation problem and apply it in the context of topological quantum computing. In this setting, quantum gates are realized by sequences of elementary braids of quasiparticles with exotic fractional statistics in certain two-dimensional topological condensed matter systems, described by effective topological quantum field theories. We specifically focus on a non-semisimple version of topological field theory, which provides a foundation for an extended theory of Ising anyons and which has recently been shown by Iulianelli et al., Nature Communications {\bf 16}, 6408 (2025), to permit universal quantum computation. While the proofs of this pioneering result are existential in nature, the mixed integer programming provides an approach to explicitly construct quantum gates in topological systems. We demonstrate this by focusing specifically on the entangling controlled-NOT operation, and its local equivalence class, using braiding operations in the non-semisimple Ising system. This illustrates the utility of the Mixed-Integer Quadratically Constrained Quadratic Programming for topological quantum compilation.
Beyond Euclid: An Illustrated Guide to Modern Machine Learning with Geometric, Topological, and Algebraic Structures
The enduring legacy of Euclidean geometry underpins classical machine learning, which, for decades, has been primarily developed for data lying in Euclidean space. Yet, modern machine learning increasingly encounters richly structured data that is inherently nonEuclidean. This data can exhibit intricate geometric, topological and algebraic structure: from the geometry of the curvature of space-time, to topologically complex interactions between neurons in the brain, to the algebraic transformations describing symmetries of physical systems. Extracting knowledge from such non-Euclidean data necessitates a broader mathematical perspective. Echoing the 19th-century revolutions that gave rise to non-Euclidean geometry, an emerging line of research is redefining modern machine learning with non-Euclidean structures. Its goal: generalizing classical methods to unconventional data types with geometry, topology, and algebra. In this review, we provide an accessible gateway to this fast-growing field and propose a graphical taxonomy that integrates recent advances into an intuitive unified framework. We subsequently extract insights into current challenges and highlight exciting opportunities for future development in this field.
A Theory of Topological Derivatives for Inverse Rendering of Geometry
We introduce a theoretical framework for differentiable surface evolution that allows discrete topology changes through the use of topological derivatives for variational optimization of image functionals. While prior methods for inverse rendering of geometry rely on silhouette gradients for topology changes, such signals are sparse. In contrast, our theory derives topological derivatives that relate the introduction of vanishing holes and phases to changes in image intensity. As a result, we enable differentiable shape perturbations in the form of hole or phase nucleation. We validate the proposed theory with optimization of closed curves in 2D and surfaces in 3D to lend insights into limitations of current methods and enable improved applications such as image vectorization, vector-graphics generation from text prompts, single-image reconstruction of shape ambigrams and multi-view 3D reconstruction.
Practical and Optimal LSH for Angular Distance
We show the existence of a Locality-Sensitive Hashing (LSH) family for the angular distance that yields an approximate Near Neighbor Search algorithm with the asymptotically optimal running time exponent. Unlike earlier algorithms with this property (e.g., Spherical LSH [Andoni, Indyk, Nguyen, Razenshteyn 2014], [Andoni, Razenshteyn 2015]), our algorithm is also practical, improving upon the well-studied hyperplane LSH [Charikar, 2002] in practice. We also introduce a multiprobe version of this algorithm, and conduct experimental evaluation on real and synthetic data sets. We complement the above positive results with a fine-grained lower bound for the quality of any LSH family for angular distance. Our lower bound implies that the above LSH family exhibits a trade-off between evaluation time and quality that is close to optimal for a natural class of LSH functions.
On the extremal length of the hyperbolic metric
For any closed hyperbolic Riemann surface X, we show that the extremal length of the Liouville current is determined solely by the topology of \(X\). This confirms a conjecture of Mart\'inez-Granado and Thurston. We also obtain an upper bound, depending only on X, for the diameter of extremal metrics on X with area one.
Local Graph Clustering with Noisy Labels
The growing interest in machine learning problems over graphs with additional node information such as texts, images, or labels has popularized methods that require the costly operation of processing the entire graph. Yet, little effort has been made to the development of fast local methods (i.e. without accessing the entire graph) that extract useful information from such data. To that end, we propose a study of local graph clustering using noisy node labels as a proxy for additional node information. In this setting, nodes receive initial binary labels based on cluster affiliation: 1 if they belong to the target cluster and 0 otherwise. Subsequently, a fraction of these labels is flipped. We investigate the benefits of incorporating noisy labels for local graph clustering. By constructing a weighted graph with such labels, we study the performance of graph diffusion-based local clustering method on both the original and the weighted graphs. From a theoretical perspective, we consider recovering an unknown target cluster with a single seed node in a random graph with independent noisy node labels. We provide sufficient conditions on the label noise under which, with high probability, using diffusion in the weighted graph yields a more accurate recovery of the target cluster. This approach proves more effective than using the given labels alone or using diffusion in the label-free original graph. Empirically, we show that reliable node labels can be obtained with just a few samples from an attributed graph. Moreover, utilizing these labels via diffusion in the weighted graph leads to significantly better local clustering performance across several real-world datasets, improving F1 scores by up to 13%.
Approximating the Convex Hull via Metric Space Magnitude
Magnitude of a finite metric space and the related notion of magnitude functions on metric spaces is an active area of research in algebraic topology. Magnitude originally arose in the context of biology, where it represents the number of effective species in an environment; when applied to a one-parameter family of metric spaces tX with scale parameter t, the magnitude captures much of the underlying geometry of the space. Prior work has mostly focussed on properties of magnitude in a global sense; in this paper we restrict the sets to finite subsets of Euclidean space and investigate its individual components. We give an explicit formula for the corrected inclusion-exclusion principle, and define a quantity associated with each point, called the moment which gives an intrinsic ordering to the points. We exploit this in order to form an algorithm which approximates the convex hull.
AnimateAnyMesh: A Feed-Forward 4D Foundation Model for Text-Driven Universal Mesh Animation
Recent advances in 4D content generation have attracted increasing attention, yet creating high-quality animated 3D models remains challenging due to the complexity of modeling spatio-temporal distributions and the scarcity of 4D training data. In this paper, we present AnimateAnyMesh, the first feed-forward framework that enables efficient text-driven animation of arbitrary 3D meshes. Our approach leverages a novel DyMeshVAE architecture that effectively compresses and reconstructs dynamic mesh sequences by disentangling spatial and temporal features while preserving local topological structures. To enable high-quality text-conditional generation, we employ a Rectified Flow-based training strategy in the compressed latent space. Additionally, we contribute the DyMesh Dataset, containing over 4M diverse dynamic mesh sequences with text annotations. Experimental results demonstrate that our method generates semantically accurate and temporally coherent mesh animations in a few seconds, significantly outperforming existing approaches in both quality and efficiency. Our work marks a substantial step forward in making 4D content creation more accessible and practical. All the data, code, and models will be open-released.
NeuDA: Neural Deformable Anchor for High-Fidelity Implicit Surface Reconstruction
This paper studies implicit surface reconstruction leveraging differentiable ray casting. Previous works such as IDR and NeuS overlook the spatial context in 3D space when predicting and rendering the surface, thereby may fail to capture sharp local topologies such as small holes and structures. To mitigate the limitation, we propose a flexible neural implicit representation leveraging hierarchical voxel grids, namely Neural Deformable Anchor (NeuDA), for high-fidelity surface reconstruction. NeuDA maintains the hierarchical anchor grids where each vertex stores a 3D position (or anchor) instead of the direct embedding (or feature). We optimize the anchor grids such that different local geometry structures can be adaptively encoded. Besides, we dig into the frequency encoding strategies and introduce a simple hierarchical positional encoding method for the hierarchical anchor structure to flexibly exploit the properties of high-frequency and low-frequency geometry and appearance. Experiments on both the DTU and BlendedMVS datasets demonstrate that NeuDA can produce promising mesh surfaces.
Probability, valuations, hyperspace: Three monads on Top and the support as a morphism
We consider three monads on Top, the category of topological spaces, which formalize topological aspects of probability and possibility in categorical terms. The first one is the Hoare hyperspace monad H, which assigns to every space its space of closed subsets equipped with the lower Vietoris topology. The second is the monad V of continuous valuations, also known as the extended probabilistic powerdomain. We construct both monads in a unified way in terms of double dualization. This reveals a close analogy between them, and allows us to prove that the operation of taking the support of a continuous valuation is a morphism of monads from V to H. In particular, this implies that every H-algebra (topological complete semilattice) is also a V-algebra. Third, we show that V can be restricted to a submonad of tau-smooth probability measures on Top. By composing these two morphisms of monads, we obtain that taking the support of a tau-smooth probability measure is also a morphism of monads.
On Characterizing the Capacity of Neural Networks using Algebraic Topology
The learnability of different neural architectures can be characterized directly by computable measures of data complexity. In this paper, we reframe the problem of architecture selection as understanding how data determines the most expressive and generalizable architectures suited to that data, beyond inductive bias. After suggesting algebraic topology as a measure for data complexity, we show that the power of a network to express the topological complexity of a dataset in its decision region is a strictly limiting factor in its ability to generalize. We then provide the first empirical characterization of the topological capacity of neural networks. Our empirical analysis shows that at every level of dataset complexity, neural networks exhibit topological phase transitions. This observation allowed us to connect existing theory to empirically driven conjectures on the choice of architectures for fully-connected neural networks.
