new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 29

Low Rank Matrix Completion via Robust Alternating Minimization in Nearly Linear Time

Given a matrix Min R^{mtimes n}, the low rank matrix completion problem asks us to find a rank-k approximation of M as UV^top for Uin R^{mtimes k} and Vin R^{ntimes k} by only observing a few entries specified by a set of entries Omegasubseteq [m]times [n]. In particular, we examine an approach that is widely used in practice -- the alternating minimization framework. Jain, Netrapalli and Sanghavi~jns13 showed that if M has incoherent rows and columns, then alternating minimization provably recovers the matrix M by observing a nearly linear in n number of entries. While the sample complexity has been subsequently improved~glz17, alternating minimization steps are required to be computed exactly. This hinders the development of more efficient algorithms and fails to depict the practical implementation of alternating minimization, where the updates are usually performed approximately in favor of efficiency. In this paper, we take a major step towards a more efficient and error-robust alternating minimization framework. To this end, we develop an analytical framework for alternating minimization that can tolerate moderate amount of errors caused by approximate updates. Moreover, our algorithm runs in time widetilde O(|Omega| k), which is nearly linear in the time to verify the solution while preserving the sample complexity. This improves upon all prior known alternating minimization approaches which require widetilde O(|Omega| k^2) time.

  • 4 authors
·
Feb 21, 2023

A Domain-Knowledge-Inspired Music Embedding Space and a Novel Attention Mechanism for Symbolic Music Modeling

Following the success of the transformer architecture in the natural language domain, transformer-like architectures have been widely applied to the domain of symbolic music recently. Symbolic music and text, however, are two different modalities. Symbolic music contains multiple attributes, both absolute attributes (e.g., pitch) and relative attributes (e.g., pitch interval). These relative attributes shape human perception of musical motifs. These important relative attributes, however, are mostly ignored in existing symbolic music modeling methods with the main reason being the lack of a musically-meaningful embedding space where both the absolute and relative embeddings of the symbolic music tokens can be efficiently represented. In this paper, we propose the Fundamental Music Embedding (FME) for symbolic music based on a bias-adjusted sinusoidal encoding within which both the absolute and the relative attributes can be embedded and the fundamental musical properties (e.g., translational invariance) are explicitly preserved. Taking advantage of the proposed FME, we further propose a novel attention mechanism based on the relative index, pitch and onset embeddings (RIPO attention) such that the musical domain knowledge can be fully utilized for symbolic music modeling. Experiment results show that our proposed model: RIPO transformer which utilizes FME and RIPO attention outperforms the state-of-the-art transformers (i.e., music transformer, linear transformer) in a melody completion task. Moreover, using the RIPO transformer in a downstream music generation task, we notice that the notorious degeneration phenomenon no longer exists and the music generated by the RIPO transformer outperforms the music generated by state-of-the-art transformer models in both subjective and objective evaluations.

  • 3 authors
·
Dec 2, 2022