new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 19

Controllable Latent Space Augmentation for Digital Pathology

Whole slide image (WSI) analysis in digital pathology presents unique challenges due to the gigapixel resolution of WSIs and the scarcity of dense supervision signals. While Multiple Instance Learning (MIL) is a natural fit for slide-level tasks, training robust models requires large and diverse datasets. Even though image augmentation techniques could be utilized to increase data variability and reduce overfitting, implementing them effectively is not a trivial task. Traditional patch-level augmentation is prohibitively expensive due to the large number of patches extracted from each WSI, and existing feature-level augmentation methods lack control over transformation semantics. We introduce HistAug, a fast and efficient generative model for controllable augmentations in the latent space for digital pathology. By conditioning on explicit patch-level transformations (e.g., hue, erosion), HistAug generates realistic augmented embeddings while preserving initial semantic information. Our method allows the processing of a large number of patches in a single forward pass efficiently, while at the same time consistently improving MIL model performance. Experiments across multiple slide-level tasks and diverse organs show that HistAug outperforms existing methods, particularly in low-data regimes. Ablation studies confirm the benefits of learned transformations over noise-based perturbations and highlight the importance of uniform WSI-wise augmentation. Code is available at https://github.com/MICS-Lab/HistAug.

  • 6 authors
·
Aug 20, 2025

$\boldsymbolλ$-Orthogonality Regularization for Compatible Representation Learning

Retrieval systems rely on representations learned by increasingly powerful models. However, due to the high training cost and inconsistencies in learned representations, there is significant interest in facilitating communication between representations and ensuring compatibility across independently trained neural networks. In the literature, two primary approaches are commonly used to adapt different learned representations: affine transformations, which adapt well to specific distributions but can significantly alter the original representation, and orthogonal transformations, which preserve the original structure with strict geometric constraints but limit adaptability. A key challenge is adapting the latent spaces of updated models to align with those of previous models on downstream distributions while preserving the newly learned representation spaces. In this paper, we impose a relaxed orthogonality constraint, namely λ-Orthogonality regularization, while learning an affine transformation, to obtain distribution-specific adaptation while retaining the original learned representations. Extensive experiments across various architectures and datasets validate our approach, demonstrating that it preserves the model's zero-shot performance and ensures compatibility across model updates. Code available at: https://github.com/miccunifi/lambda_orthogonality.git{https://github.com/miccunifi/lambda\_orthogonality}.

  • 5 authors
·
Sep 20, 2025

LOOPer: A Learned Automatic Code Optimizer For Polyhedral Compilers

While polyhedral compilers have shown success in implementing advanced code transformations, they still face challenges in selecting the ones that lead to the most profitable speedups. This has motivated the use of machine learning based cost models to guide the search for polyhedral optimizations. State-of-the-art polyhedral compilers have demonstrated a viable proof-of-concept of such an approach. While promising, this approach still faces significant limitations. State-of-the-art polyhedral compilers that use a deep learning cost model only support a small subset of affine transformations, limiting their ability to explore complex code transformations. Furthermore, their applicability does not scale beyond simple programs, thus excluding many program classes from their scope, such as those with non-rectangular iteration domains or multiple loop nests. These limitations significantly impact the generality of such compilers and autoschedulers and put into question the whole approach. In this paper, we introduce LOOPer, the first polyhedral autoscheduler that uses a deep learning based cost model and covers a large space of affine transformations and programs. LOOPer allows the optimization of an extensive set of programs while being effective at applying complex sequences of polyhedral transformations. We implement and evaluate LOOPer and show that it achieves competitive speedups over the state-of-the-art. On the PolyBench benchmarks, LOOPer achieves a geometric mean speedup of 1.84x over Tiramisu and 1.42x over Pluto, two state-of-the-art polyhedral autoschedulers.

  • 10 authors
·
Mar 18, 2024

Scaling Implicit Fields via Hypernetwork-Driven Multiscale Coordinate Transformations

Implicit Neural Representations (INRs) have emerged as a powerful paradigm for representing signals such as images, 3D shapes, signed distance fields, and radiance fields. While significant progress has been made in architecture design (e.g., SIREN, FFC, KAN-based INRs) and optimization strategies (meta-learning, amortization, distillation), existing approaches still suffer from two core limitations: (1) a representation bottleneck that forces a single MLP to uniformly model heterogeneous local structures, and (2) limited scalability due to the absence of a hierarchical mechanism that dynamically adapts to signal complexity. This work introduces Hyper-Coordinate Implicit Neural Representations (HC-INR), a new class of INRs that break the representational bottleneck by learning signal-adaptive coordinate transformations using a hypernetwork. HC-INR decomposes the representation task into two components: (i) a learned multiscale coordinate transformation module that warps the input domain into a disentangled latent space, and (ii) a compact implicit field network that models the transformed signal with significantly reduced complexity. The proposed model introduces a hierarchical hypernetwork architecture that conditions coordinate transformations on local signal features, enabling dynamic allocation of representation capacity. We theoretically show that HC-INR strictly increases the upper bound of representable frequency bands while maintaining Lipschitz stability. Extensive experiments across image fitting, shape reconstruction, and neural radiance field approximation demonstrate that HC-INR achieves up to 4 times higher reconstruction fidelity than strong INR baselines while using 30--60\% fewer parameters.

  • 1 authors
·
Nov 23, 2025

Random Field Augmentations for Self-Supervised Representation Learning

Self-supervised representation learning is heavily dependent on data augmentations to specify the invariances encoded in representations. Previous work has shown that applying diverse data augmentations is crucial to downstream performance, but augmentation techniques remain under-explored. In this work, we propose a new family of local transformations based on Gaussian random fields to generate image augmentations for self-supervised representation learning. These transformations generalize the well-established affine and color transformations (translation, rotation, color jitter, etc.) and greatly increase the space of augmentations by allowing transformation parameter values to vary from pixel to pixel. The parameters are treated as continuous functions of spatial coordinates, and modeled as independent Gaussian random fields. Empirical results show the effectiveness of the new transformations for self-supervised representation learning. Specifically, we achieve a 1.7% top-1 accuracy improvement over baseline on ImageNet downstream classification, and a 3.6% improvement on out-of-distribution iNaturalist downstream classification. However, due to the flexibility of the new transformations, learned representations are sensitive to hyperparameters. While mild transformations improve representations, we observe that strong transformations can degrade the structure of an image, indicating that balancing the diversity and strength of augmentations is important for improving generalization of learned representations.

  • 4 authors
·
Nov 6, 2023

Substrate Prediction for RiPP Biosynthetic Enzymes via Masked Language Modeling and Transfer Learning

Ribosomally synthesized and post-translationally modified peptide (RiPP) biosynthetic enzymes often exhibit promiscuous substrate preferences that cannot be reduced to simple rules. Large language models are promising tools for predicting such peptide fitness landscapes. However, state-of-the-art protein language models are trained on relatively few peptide sequences. A previous study comprehensively profiled the peptide substrate preferences of LazBF (a two-component serine dehydratase) and LazDEF (a three-component azole synthetase) from the lactazole biosynthetic pathway. We demonstrated that masked language modeling of LazBF substrate preferences produced language model embeddings that improved downstream classification models of both LazBF and LazDEF substrates. Similarly, masked language modeling of LazDEF substrate preferences produced embeddings that improved the performance of classification models of both LazBF and LazDEF substrates. Our results suggest that the models learned functional forms that are transferable between distinct enzymatic transformations that act within the same biosynthetic pathway. Our transfer learning method improved performance and data efficiency in data-scarce scenarios. We then fine-tuned models on each data set and showed that the fine-tuned models provided interpretable insight that we anticipate will facilitate the design of substrate libraries that are compatible with desired RiPP biosynthetic pathways.

  • 4 authors
·
Feb 23, 2024

The Closeness of In-Context Learning and Weight Shifting for Softmax Regression

Large language models (LLMs) are known for their exceptional performance in natural language processing, making them highly effective in many human life-related or even job-related tasks. The attention mechanism in the Transformer architecture is a critical component of LLMs, as it allows the model to selectively focus on specific input parts. The softmax unit, which is a key part of the attention mechanism, normalizes the attention scores. Hence, the performance of LLMs in various NLP tasks depends significantly on the crucial role played by the attention mechanism with the softmax unit. In-context learning, as one of the celebrated abilities of recent LLMs, is an important concept in querying LLMs such as ChatGPT. Without further parameter updates, Transformers can learn to predict based on few in-context examples. However, the reason why Transformers becomes in-context learners is not well understood. Recently, several works [ASA+22,GTLV22,ONR+22] have studied the in-context learning from a mathematical perspective based on a linear regression formulation min_x| Ax - b |_2, which show Transformers' capability of learning linear functions in context. In this work, we study the in-context learning based on a softmax regression formulation min_{x} | langle exp(Ax), {bf 1}_n rangle^{-1} exp(Ax) - b |_2 of Transformer's attention mechanism. We show the upper bounds of the data transformations induced by a single self-attention layer and by gradient-descent on a ell_2 regression loss for softmax prediction function, which imply that when training self-attention-only Transformers for fundamental regression tasks, the models learned by gradient-descent and Transformers show great similarity.

  • 5 authors
·
Apr 26, 2023

Diffscaler: Enhancing the Generative Prowess of Diffusion Transformers

Recently, diffusion transformers have gained wide attention with its excellent performance in text-to-image and text-to-vidoe models, emphasizing the need for transformers as backbone for diffusion models. Transformer-based models have shown better generalization capability compared to CNN-based models for general vision tasks. However, much less has been explored in the existing literature regarding the capabilities of transformer-based diffusion backbones and expanding their generative prowess to other datasets. This paper focuses on enabling a single pre-trained diffusion transformer model to scale across multiple datasets swiftly, allowing for the completion of diverse generative tasks using just one model. To this end, we propose DiffScaler, an efficient scaling strategy for diffusion models where we train a minimal amount of parameters to adapt to different tasks. In particular, we learn task-specific transformations at each layer by incorporating the ability to utilize the learned subspaces of the pre-trained model, as well as the ability to learn additional task-specific subspaces, which may be absent in the pre-training dataset. As these parameters are independent, a single diffusion model with these task-specific parameters can be used to perform multiple tasks simultaneously. Moreover, we find that transformer-based diffusion models significantly outperform CNN-based diffusion models methods while performing fine-tuning over smaller datasets. We perform experiments on four unconditional image generation datasets. We show that using our proposed method, a single pre-trained model can scale up to perform these conditional and unconditional tasks, respectively, with minimal parameter tuning while performing as close as fine-tuning an entire diffusion model for that particular task.

  • 3 authors
·
Apr 15, 2024

Reliable Unlearning Harmful Information in LLMs with Metamorphosis Representation Projection

While Large Language Models (LLMs) have demonstrated impressive performance in various domains and tasks, concerns about their safety are becoming increasingly severe. In particular, since models may store unsafe knowledge internally, machine unlearning has emerged as a representative paradigm to ensure model safety. Existing approaches employ various training techniques, such as gradient ascent and negative preference optimization, in attempts to eliminate the influence of undesired data on target models. However, these methods merely suppress the activation of undesired data through parametric training without completely eradicating its informational traces within the model. This fundamental limitation makes it difficult to achieve effective continuous unlearning, rendering these methods vulnerable to relearning attacks. To overcome these challenges, we propose a Metamorphosis Representation Projection (MRP) approach that pioneers the application of irreversible projection properties to machine unlearning. By implementing projective transformations in the hidden state space of specific network layers, our method effectively eliminates harmful information while preserving useful knowledge. Experimental results demonstrate that our approach enables effective continuous unlearning and successfully defends against relearning attacks, achieving state-of-the-art performance in unlearning effectiveness while preserving natural performance. Our code is available in https://github.com/ChengcanWu/MRP.

  • 5 authors
·
Aug 21, 2025

Automatic Data Augmentation via Invariance-Constrained Learning

Underlying data structures, such as symmetries or invariances to transformations, are often exploited to improve the solution of learning tasks. However, embedding these properties in models or learning algorithms can be challenging and computationally intensive. Data augmentation, on the other hand, induces these symmetries during training by applying multiple transformations to the input data. Despite its ubiquity, its effectiveness depends on the choices of which transformations to apply, when to do so, and how often. In fact, there is both empirical and theoretical evidence that the indiscriminate use of data augmentation can introduce biases that outweigh its benefits. This work tackles these issues by automatically adapting the data augmentation while solving the learning task. To do so, it formulates data augmentation as an invariance-constrained learning problem and leverages Monte Carlo Markov Chain (MCMC) sampling to solve it. The result is a practical algorithm that not only does away with a priori searches for augmentation distributions, but also dynamically controls if and when data augmentation is applied. Our experiments illustrate the performance of this method, which achieves state-of-the-art results in automatic data augmentation benchmarks for CIFAR datasets. Furthermore, this approach can be used to gather insights on the actual symmetries underlying a learning task.

  • 3 authors
·
Sep 29, 2022

Revisiting Transformation Invariant Geometric Deep Learning: Are Initial Representations All You Need?

Geometric deep learning, i.e., designing neural networks to handle the ubiquitous geometric data such as point clouds and graphs, have achieved great successes in the last decade. One critical inductive bias is that the model can maintain invariance towards various transformations such as translation, rotation, and scaling. The existing graph neural network (GNN) approaches can only maintain permutation-invariance, failing to guarantee invariance with respect to other transformations. Besides GNNs, other works design sophisticated transformation-invariant layers, which are computationally expensive and difficult to be extended. To solve this problem, we revisit why the existing neural networks cannot maintain transformation invariance when handling geometric data. Our findings show that transformation-invariant and distance-preserving initial representations are sufficient to achieve transformation invariance rather than needing sophisticated neural layer designs. Motivated by these findings, we propose Transformation Invariant Neural Networks (TinvNN), a straightforward and general framework for geometric data. Specifically, we realize transformation-invariant and distance-preserving initial point representations by modifying multi-dimensional scaling before feeding the representations into neural networks. We prove that TinvNN can strictly guarantee transformation invariance, being general and flexible enough to be combined with the existing neural networks. Extensive experimental results on point cloud analysis and combinatorial optimization demonstrate the effectiveness and general applicability of our proposed method. Based on the experimental results, we advocate that TinvNN should be considered a new starting point and an essential baseline for further studies of transformation-invariant geometric deep learning.

  • 5 authors
·
Dec 22, 2021

BT^2: Backward-compatible Training with Basis Transformation

Modern retrieval system often requires recomputing the representation of every piece of data in the gallery when updating to a better representation model. This process is known as backfilling and can be especially costly in the real world where the gallery often contains billions of samples. Recently, researchers have proposed the idea of Backward Compatible Training (BCT) where the new representation model can be trained with an auxiliary loss to make it backward compatible with the old representation. In this way, the new representation can be directly compared with the old representation, in principle avoiding the need for any backfilling. However, followup work shows that there is an inherent tradeoff where a backward compatible representation model cannot simultaneously maintain the performance of the new model itself. This paper reports our ``not-so-surprising'' finding that adding extra dimensions to the representation can help here. However, we also found that naively increasing the dimension of the representation did not work. To deal with this, we propose Backward-compatible Training with a novel Basis Transformation (BT^2). A basis transformation (BT) is basically a learnable set of parameters that applies an orthonormal transformation. Such a transformation possesses an important property whereby the original information contained in its input is retained in its output. We show in this paper how a BT can be utilized to add only the necessary amount of additional dimensions. We empirically verify the advantage of BT^2 over other state-of-the-art methods in a wide range of settings. We then further extend BT^2 to other challenging yet more practical settings, including significant change in model architecture (CNN to Transformers), modality change, and even a series of updates in the model architecture mimicking the evolution of deep learning models.

  • 7 authors
·
Nov 7, 2022

Inverse Dynamics Pretraining Learns Good Representations for Multitask Imitation

In recent years, domains such as natural language processing and image recognition have popularized the paradigm of using large datasets to pretrain representations that can be effectively transferred to downstream tasks. In this work we evaluate how such a paradigm should be done in imitation learning, where both pretraining and finetuning data are trajectories collected by experts interacting with an unknown environment. Namely, we consider a setting where the pretraining corpus consists of multitask demonstrations and the task for each demonstration is set by an unobserved latent context variable. The goal is to use the pretraining corpus to learn a low dimensional representation of the high dimensional (e.g., visual) observation space which can be transferred to a novel context for finetuning on a limited dataset of demonstrations. Among a variety of possible pretraining objectives, we argue that inverse dynamics modeling -- i.e., predicting an action given the observations appearing before and after it in the demonstration -- is well-suited to this setting. We provide empirical evidence of this claim through evaluations on a variety of simulated visuomotor manipulation problems. While previous work has attempted various theoretical explanations regarding the benefit of inverse dynamics modeling, we find that these arguments are insufficient to explain the empirical advantages often observed in our settings, and so we derive a novel analysis using a simple but general environment model.

  • 3 authors
·
May 26, 2023

Prototype-Sample Relation Distillation: Towards Replay-Free Continual Learning

In Continual learning (CL) balancing effective adaptation while combating catastrophic forgetting is a central challenge. Many of the recent best-performing methods utilize various forms of prior task data, e.g. a replay buffer, to tackle the catastrophic forgetting problem. Having access to previous task data can be restrictive in many real-world scenarios, for example when task data is sensitive or proprietary. To overcome the necessity of using previous tasks' data, in this work, we start with strong representation learning methods that have been shown to be less prone to forgetting. We propose a holistic approach to jointly learn the representation and class prototypes while maintaining the relevance of old class prototypes and their embedded similarities. Specifically, samples are mapped to an embedding space where the representations are learned using a supervised contrastive loss. Class prototypes are evolved continually in the same latent space, enabling learning and prediction at any point. To continually adapt the prototypes without keeping any prior task data, we propose a novel distillation loss that constrains class prototypes to maintain relative similarities as compared to new task data. This method yields state-of-the-art performance in the task-incremental setting, outperforming methods relying on large amounts of data, and provides strong performance in the class-incremental setting without using any stored data points.

  • 5 authors
·
Mar 26, 2023

Talk2Move: Reinforcement Learning for Text-Instructed Object-Level Geometric Transformation in Scenes

We introduce Talk2Move, a reinforcement learning (RL) based diffusion framework for text-instructed spatial transformation of objects within scenes. Spatially manipulating objects in a scene through natural language poses a challenge for multimodal generation systems. While existing text-based manipulation methods can adjust appearance or style, they struggle to perform object-level geometric transformations-such as translating, rotating, or resizing objects-due to scarce paired supervision and pixel-level optimization limits. Talk2Move employs Group Relative Policy Optimization (GRPO) to explore geometric actions through diverse rollouts generated from input images and lightweight textual variations, removing the need for costly paired data. A spatial reward guided model aligns geometric transformations with linguistic description, while off-policy step evaluation and active step sampling improve learning efficiency by focusing on informative transformation stages. Furthermore, we design object-centric spatial rewards that evaluate displacement, rotation, and scaling behaviors directly, enabling interpretable and coherent transformations. Experiments on curated benchmarks demonstrate that Talk2Move achieves precise, consistent, and semantically faithful object transformations, outperforming existing text-guided editing approaches in both spatial accuracy and scene coherence.

  • 9 authors
·
Jan 5 5

Analyzing Transformer Dynamics as Movement through Embedding Space

Transformer based language models exhibit intelligent behaviors such as understanding natural language, recognizing patterns, acquiring knowledge, reasoning, planning, reflecting and using tools. This paper explores how their underlying mechanics give rise to intelligent behaviors. Towards that end, we propose framing Transformer dynamics as movement through embedding space. Examining Transformers through this perspective reveals key insights, establishing a Theory of Transformers: 1) Intelligent behaviours map to paths in Embedding Space which, the Transformer random-walks through during inferencing. 2) LM training learns a probability distribution over all possible paths. `Intelligence' is learnt by assigning higher probabilities to paths representing intelligent behaviors. No learning can take place in-context; context only narrows the subset of paths sampled during decoding. 5) The Transformer is a self-mapping composition function, folding a context sequence into a context-vector such that it's proximity to a token-vector reflects its co-occurrence and conditioned probability. Thus, the physical arrangement of vectors in Embedding Space determines path probabilities. 6) Context vectors are composed by aggregating features of the sequence's tokens via a process we call the encoding walk. Attention contributes a - potentially redundant - association-bias to this process. 7) This process is comprised of two principal operation types: filtering (data independent) and aggregation (data dependent). This generalization unifies Transformers with other sequence models. Building upon this foundation, we formalize a popular semantic interpretation of embeddings into a ``concept-space theory'' and find some evidence of it's validity.

  • 1 authors
·
Aug 21, 2023

LIBERO: Benchmarking Knowledge Transfer for Lifelong Robot Learning

Lifelong learning offers a promising paradigm of building a generalist agent that learns and adapts over its lifespan. Unlike traditional lifelong learning problems in image and text domains, which primarily involve the transfer of declarative knowledge of entities and concepts, lifelong learning in decision-making (LLDM) also necessitates the transfer of procedural knowledge, such as actions and behaviors. To advance research in LLDM, we introduce LIBERO, a novel benchmark of lifelong learning for robot manipulation. Specifically, LIBERO highlights five key research topics in LLDM: 1) how to efficiently transfer declarative knowledge, procedural knowledge, or the mixture of both; 2) how to design effective policy architectures and 3) effective algorithms for LLDM; 4) the robustness of a lifelong learner with respect to task ordering; and 5) the effect of model pretraining for LLDM. We develop an extendible procedural generation pipeline that can in principle generate infinitely many tasks. For benchmarking purpose, we create four task suites (130 tasks in total) that we use to investigate the above-mentioned research topics. To support sample-efficient learning, we provide high-quality human-teleoperated demonstration data for all tasks. Our extensive experiments present several insightful or even unexpected discoveries: sequential finetuning outperforms existing lifelong learning methods in forward transfer, no single visual encoder architecture excels at all types of knowledge transfer, and naive supervised pretraining can hinder agents' performance in the subsequent LLDM. Check the website at https://libero-project.github.io for the code and the datasets.

  • 7 authors
·
Jun 5, 2023

Understanding the Role of Invariance in Transfer Learning

Transfer learning is a powerful technique for knowledge-sharing between different tasks. Recent work has found that the representations of models with certain invariances, such as to adversarial input perturbations, achieve higher performance on downstream tasks. These findings suggest that invariance may be an important property in the context of transfer learning. However, the relationship of invariance with transfer performance is not fully understood yet and a number of questions remain. For instance, how important is invariance compared to other factors of the pretraining task? How transferable is learned invariance? In this work, we systematically investigate the importance of representational invariance for transfer learning, as well as how it interacts with other parameters during pretraining. To do so, we introduce a family of synthetic datasets that allow us to precisely control factors of variation both in training and test data. Using these datasets, we a) show that for learning representations with high transfer performance, invariance to the right transformations is as, or often more, important than most other factors such as the number of training samples, the model architecture and the identity of the pretraining classes, b) show conditions under which invariance can harm the ability to transfer representations and c) explore how transferable invariance is between tasks. The code is available at https://github.com/tillspeicher/representation-invariance-transfer.

  • 3 authors
·
Jul 5, 2024

EMMA: Generalizing Real-World Robot Manipulation via Generative Visual Transfer

Vision-language-action (VLA) models increasingly rely on diverse training data to achieve robust generalization. However, collecting large-scale real-world robot manipulation data across varied object appearances and environmental conditions remains prohibitively time-consuming and expensive. To overcome this bottleneck, we propose Embodied Manipulation Media Adaptation (EMMA), a VLA policy enhancement framework that integrates a generative data engine with an effective training pipeline. We introduce DreamTransfer, a diffusion Transformer-based framework for generating multi-view consistent, geometrically grounded embodied manipulation videos. DreamTransfer enables text-controlled visual editing of robot videos, transforming foreground, background, and lighting conditions without compromising 3D structure or geometrical plausibility. Furthermore, we explore hybrid training with real and generated data, and introduce AdaMix, a hard-sample-aware training strategy that dynamically reweights training batches to focus optimization on perceptually or kinematically challenging samples. Extensive experiments show that videos generated by DreamTransfer significantly outperform prior video generation methods in multi-view consistency, geometric fidelity, and text-conditioning accuracy. Crucially, VLAs trained with generated data enable robots to generalize to unseen object categories and novel visual domains using only demonstrations from a single appearance. In real-world robotic manipulation tasks with zero-shot visual domains, our approach achieves over a 200% relative performance gain compared to training on real data alone, and further improves by 13% with AdaMix, demonstrating its effectiveness in boosting policy generalization.

  • 13 authors
·
Sep 26, 2025

Action Flow Matching for Continual Robot Learning

Continual learning in robotics seeks systems that can constantly adapt to changing environments and tasks, mirroring human adaptability. A key challenge is refining dynamics models, essential for planning and control, while addressing issues such as safe adaptation, catastrophic forgetting, outlier management, data efficiency, and balancing exploration with exploitation -- all within task and onboard resource constraints. Towards this goal, we introduce a generative framework leveraging flow matching for online robot dynamics model alignment. Rather than executing actions based on a misaligned model, our approach refines planned actions to better match with those the robot would take if its model was well aligned. We find that by transforming the actions themselves rather than exploring with a misaligned model -- as is traditionally done -- the robot collects informative data more efficiently, thereby accelerating learning. Moreover, we validate that the method can handle an evolving and possibly imperfect model while reducing, if desired, the dependency on replay buffers or legacy model snapshots. We validate our approach using two platforms: an unmanned ground vehicle and a quadrotor. The results highlight the method's adaptability and efficiency, with a record 34.2\% higher task success rate, demonstrating its potential towards enabling continual robot learning. Code: https://github.com/AlejandroMllo/action_flow_matching.

  • 2 authors
·
Apr 25, 2025 1

ImageBrush: Learning Visual In-Context Instructions for Exemplar-Based Image Manipulation

While language-guided image manipulation has made remarkable progress, the challenge of how to instruct the manipulation process faithfully reflecting human intentions persists. An accurate and comprehensive description of a manipulation task using natural language is laborious and sometimes even impossible, primarily due to the inherent uncertainty and ambiguity present in linguistic expressions. Is it feasible to accomplish image manipulation without resorting to external cross-modal language information? If this possibility exists, the inherent modality gap would be effortlessly eliminated. In this paper, we propose a novel manipulation methodology, dubbed ImageBrush, that learns visual instructions for more accurate image editing. Our key idea is to employ a pair of transformation images as visual instructions, which not only precisely captures human intention but also facilitates accessibility in real-world scenarios. Capturing visual instructions is particularly challenging because it involves extracting the underlying intentions solely from visual demonstrations and then applying this operation to a new image. To address this challenge, we formulate visual instruction learning as a diffusion-based inpainting problem, where the contextual information is fully exploited through an iterative process of generation. A visual prompting encoder is carefully devised to enhance the model's capacity in uncovering human intent behind the visual instructions. Extensive experiments show that our method generates engaging manipulation results conforming to the transformations entailed in demonstrations. Moreover, our model exhibits robust generalization capabilities on various downstream tasks such as pose transfer, image translation and video inpainting.

  • 8 authors
·
Aug 1, 2023

Fighting Fire with Fire: Contrastive Debiasing without Bias-free Data via Generative Bias-transformation

Despite their remarkable ability to generalize with over-capacity networks, deep neural networks often learn to abuse spurious biases in the data instead of using the actual task-related information. Since such shortcuts are only effective within the collected dataset, the resulting biased model underperforms on real-world inputs, or cause unintended social repercussions such as gender discrimination. To counteract the influence of bias, existing methods either exploit auxiliary information which is rarely obtainable in practice, or sift for bias-free samples in the training data, hoping for the sufficient existence of clean samples. However, such presumptions about the data are not always guaranteed. In this paper, we propose Contrastive Debiasing via Generative Bias-transformation~(CDvG) which is capable of operating in more general environments where existing methods break down due to unmet presumptions such as insufficient bias-free samples. Motivated by our observation that not only discriminative models, as previously known, but also generative models tend to focus on the bias when possible, CDvG uses a translation model to transform the bias in the sample to another mode of bias while preserving task-relevant information. Through contrastive learning, we set transformed biased views against another, learning bias-invariant representations. Experimental results on synthetic and real-world datasets demonstrate that our framework outperforms the current state-of-the-arts, and effectively prevents the models from being biased even when bias-free samples are extremely scarce.

  • 4 authors
·
Dec 2, 2021

DynaMo: In-Domain Dynamics Pretraining for Visuo-Motor Control

Imitation learning has proven to be a powerful tool for training complex visuomotor policies. However, current methods often require hundreds to thousands of expert demonstrations to handle high-dimensional visual observations. A key reason for this poor data efficiency is that visual representations are predominantly either pretrained on out-of-domain data or trained directly through a behavior cloning objective. In this work, we present DynaMo, a new in-domain, self-supervised method for learning visual representations. Given a set of expert demonstrations, we jointly learn a latent inverse dynamics model and a forward dynamics model over a sequence of image embeddings, predicting the next frame in latent space, without augmentations, contrastive sampling, or access to ground truth actions. Importantly, DynaMo does not require any out-of-domain data such as Internet datasets or cross-embodied datasets. On a suite of six simulated and real environments, we show that representations learned with DynaMo significantly improve downstream imitation learning performance over prior self-supervised learning objectives, and pretrained representations. Gains from using DynaMo hold across policy classes such as Behavior Transformer, Diffusion Policy, MLP, and nearest neighbors. Finally, we ablate over key components of DynaMo and measure its impact on downstream policy performance. Robot videos are best viewed at https://dynamo-ssl.github.io

  • 5 authors
·
Sep 18, 2024 3

Transformers for Supervised Online Continual Learning

Transformers have become the dominant architecture for sequence modeling tasks such as natural language processing or audio processing, and they are now even considered for tasks that are not naturally sequential such as image classification. Their ability to attend to and to process a set of tokens as context enables them to develop in-context few-shot learning abilities. However, their potential for online continual learning remains relatively unexplored. In online continual learning, a model must adapt to a non-stationary stream of data, minimizing the cumulative nextstep prediction loss. We focus on the supervised online continual learning setting, where we learn a predictor x_t rightarrow y_t for a sequence of examples (x_t, y_t). Inspired by the in-context learning capabilities of transformers and their connection to meta-learning, we propose a method that leverages these strengths for online continual learning. Our approach explicitly conditions a transformer on recent observations, while at the same time online training it with stochastic gradient descent, following the procedure introduced with Transformer-XL. We incorporate replay to maintain the benefits of multi-epoch training while adhering to the sequential protocol. We hypothesize that this combination enables fast adaptation through in-context learning and sustained longterm improvement via parametric learning. Our method demonstrates significant improvements over previous state-of-the-art results on CLOC, a challenging large-scale real-world benchmark for image geo-localization.

  • 3 authors
·
Mar 3, 2024

General-Purpose In-Context Learning by Meta-Learning Transformers

Modern machine learning requires system designers to specify aspects of the learning pipeline, such as losses, architectures, and optimizers. Meta-learning, or learning-to-learn, instead aims to learn those aspects, and promises to unlock greater capabilities with less manual effort. One particularly ambitious goal of meta-learning is to train general-purpose in-context learning algorithms from scratch, using only black-box models with minimal inductive bias. Such a model takes in training data, and produces test-set predictions across a wide range of problems, without any explicit definition of an inference model, training loss, or optimization algorithm. In this paper we show that Transformers and other black-box models can be meta-trained to act as general-purpose in-context learners. We characterize transitions between algorithms that generalize, algorithms that memorize, and algorithms that fail to meta-train at all, induced by changes in model size, number of tasks, and meta-optimization. We further show that the capabilities of meta-trained algorithms are bottlenecked by the accessible state size (memory) determining the next prediction, unlike standard models which are thought to be bottlenecked by parameter count. Finally, we propose practical interventions such as biasing the training distribution that improve the meta-training and meta-generalization of general-purpose in-context learning algorithms.

  • 4 authors
·
Dec 8, 2022

Learning a Thousand Tasks in a Day

Humans are remarkably efficient at learning tasks from demonstrations, but today's imitation learning methods for robot manipulation often require hundreds or thousands of demonstrations per task. We investigate two fundamental priors for improving learning efficiency: decomposing manipulation trajectories into sequential alignment and interaction phases, and retrieval-based generalisation. Through 3,450 real-world rollouts, we systematically study this decomposition. We compare different design choices for the alignment and interaction phases, and examine generalisation and scaling trends relative to today's dominant paradigm of behavioural cloning with a single-phase monolithic policy. In the few-demonstrations-per-task regime (<10 demonstrations), decomposition achieves an order of magnitude improvement in data efficiency over single-phase learning, with retrieval consistently outperforming behavioural cloning for both alignment and interaction. Building on these insights, we develop Multi-Task Trajectory Transfer (MT3), an imitation learning method based on decomposition and retrieval. MT3 learns everyday manipulation tasks from as little as a single demonstration each, whilst also generalising to novel object instances. This efficiency enables us to teach a robot 1,000 distinct everyday tasks in under 24 hours of human demonstrator time. Through 2,200 additional real-world rollouts, we reveal MT3's capabilities and limitations across different task families. Videos of our experiments can be found on at https://www.robot-learning.uk/learning-1000-tasks.

  • 4 authors
·
Nov 13, 2025

Analyzing Fine-tuning Representation Shift for Multimodal LLMs Steering alignment

Multimodal LLMs have reached remarkable levels of proficiency in understanding multimodal inputs, driving extensive research to develop increasingly powerful models. However, much less attention has been paid to understanding and explaining the underlying mechanisms of these models. Most existing explainability research examines these models only in their final states, overlooking the dynamic representational shifts that occur during training. In this work, we systematically analyze the evolution of hidden state representations to reveal how fine-tuning alters the internal structure of a model to specialize in new multimodal tasks. Using a concept-based approach, we map hidden states to interpretable visual and textual concepts, enabling us to trace changes in encoded concepts across modalities as training progresses. We also demonstrate the use of shift vectors to capture these concepts changes. These shift vectors allow us to recover fine-tuned concepts by shifting those in the original model. Finally, we explore the practical impact of our findings on model steering, showing that we can adjust multimodal LLMs behaviors without any training, such as modifying answer types, captions style, or biasing the model toward specific responses. Our work sheds light on how multimodal representations evolve through fine-tuning and offers a new perspective for interpreting model adaptation in multimodal tasks. The code for this project is publicly available at https://github.com/mshukor/xl-vlms.

  • 4 authors
·
Jan 6, 2025

Generalized Teacher Forcing for Learning Chaotic Dynamics

Chaotic dynamical systems (DS) are ubiquitous in nature and society. Often we are interested in reconstructing such systems from observed time series for prediction or mechanistic insight, where by reconstruction we mean learning geometrical and invariant temporal properties of the system in question (like attractors). However, training reconstruction algorithms like recurrent neural networks (RNNs) on such systems by gradient-descent based techniques faces severe challenges. This is mainly due to exploding gradients caused by the exponential divergence of trajectories in chaotic systems. Moreover, for (scientific) interpretability we wish to have as low dimensional reconstructions as possible, preferably in a model which is mathematically tractable. Here we report that a surprisingly simple modification of teacher forcing leads to provably strictly all-time bounded gradients in training on chaotic systems, and, when paired with a simple architectural rearrangement of a tractable RNN design, piecewise-linear RNNs (PLRNNs), allows for faithful reconstruction in spaces of at most the dimensionality of the observed system. We show on several DS that with these amendments we can reconstruct DS better than current SOTA algorithms, in much lower dimensions. Performance differences were particularly compelling on real world data with which most other methods severely struggled. This work thus led to a simple yet powerful DS reconstruction algorithm which is highly interpretable at the same time.

  • 4 authors
·
Jun 7, 2023

Meta-DMoE: Adapting to Domain Shift by Meta-Distillation from Mixture-of-Experts

In this paper, we tackle the problem of domain shift. Most existing methods perform training on multiple source domains using a single model, and the same trained model is used on all unseen target domains. Such solutions are sub-optimal as each target domain exhibits its own specialty, which is not adapted. Furthermore, expecting single-model training to learn extensive knowledge from multiple source domains is counterintuitive. The model is more biased toward learning only domain-invariant features and may result in negative knowledge transfer. In this work, we propose a novel framework for unsupervised test-time adaptation, which is formulated as a knowledge distillation process to address domain shift. Specifically, we incorporate Mixture-of-Experts (MoE) as teachers, where each expert is separately trained on different source domains to maximize their specialty. Given a test-time target domain, a small set of unlabeled data is sampled to query the knowledge from MoE. As the source domains are correlated to the target domains, a transformer-based aggregator then combines the domain knowledge by examining the interconnection among them. The output is treated as a supervision signal to adapt a student prediction network toward the target domain. We further employ meta-learning to enforce the aggregator to distill positive knowledge and the student network to achieve fast adaptation. Extensive experiments demonstrate that the proposed method outperforms the state-of-the-art and validates the effectiveness of each proposed component. Our code is available at https://github.com/n3il666/Meta-DMoE.

  • 6 authors
·
Oct 7, 2022

Transformers learn in-context by gradient descent

At present, the mechanisms of in-context learning in Transformers are not well understood and remain mostly an intuition. In this paper, we suggest that training Transformers on auto-regressive objectives is closely related to gradient-based meta-learning formulations. We start by providing a simple weight construction that shows the equivalence of data transformations induced by 1) a single linear self-attention layer and by 2) gradient-descent (GD) on a regression loss. Motivated by that construction, we show empirically that when training self-attention-only Transformers on simple regression tasks either the models learned by GD and Transformers show great similarity or, remarkably, the weights found by optimization match the construction. Thus we show how trained Transformers become mesa-optimizers i.e. learn models by gradient descent in their forward pass. This allows us, at least in the domain of regression problems, to mechanistically understand the inner workings of in-context learning in optimized Transformers. Building on this insight, we furthermore identify how Transformers surpass the performance of plain gradient descent by learning an iterative curvature correction and learn linear models on deep data representations to solve non-linear regression tasks. Finally, we discuss intriguing parallels to a mechanism identified to be crucial for in-context learning termed induction-head (Olsson et al., 2022) and show how it could be understood as a specific case of in-context learning by gradient descent learning within Transformers. Code to reproduce the experiments can be found at https://github.com/google-research/self-organising-systems/tree/master/transformers_learn_icl_by_gd .

  • 7 authors
·
Dec 15, 2022

Building Variable-sized Models via Learngene Pool

Recently, Stitchable Neural Networks (SN-Net) is proposed to stitch some pre-trained networks for quickly building numerous networks with different complexity and performance trade-offs. In this way, the burdens of designing or training the variable-sized networks, which can be used in application scenarios with diverse resource constraints, are alleviated. However, SN-Net still faces a few challenges. 1) Stitching from multiple independently pre-trained anchors introduces high storage resource consumption. 2) SN-Net faces challenges to build smaller models for low resource constraints. 3). SN-Net uses an unlearned initialization method for stitch layers, limiting the final performance. To overcome these challenges, motivated by the recently proposed Learngene framework, we propose a novel method called Learngene Pool. Briefly, Learngene distills the critical knowledge from a large pre-trained model into a small part (termed as learngene) and then expands this small part into a few variable-sized models. In our proposed method, we distill one pretrained large model into multiple small models whose network blocks are used as learngene instances to construct the learngene pool. Since only one large model is used, we do not need to store more large models as SN-Net and after distilling, smaller learngene instances can be created to build small models to satisfy low resource constraints. We also insert learnable transformation matrices between the instances to stitch them into variable-sized models to improve the performance of these models. Exhaustive experiments have been implemented and the results validate the effectiveness of the proposed Learngene Pool compared with SN-Net.

  • 6 authors
·
Dec 9, 2023

Recursive Introspection: Teaching Language Model Agents How to Self-Improve

A central piece in enabling intelligent agentic behavior in foundation models is to make them capable of introspecting upon their behavior, reasoning, and correcting their mistakes as more computation or interaction is available. Even the strongest proprietary large language models (LLMs) do not quite exhibit the ability of continually improving their responses sequentially, even in scenarios where they are explicitly told that they are making a mistake. In this paper, we develop RISE: Recursive IntroSpEction, an approach for fine-tuning LLMs to introduce this capability, despite prior work hypothesizing that this capability may not be possible to attain. Our approach prescribes an iterative fine-tuning procedure, which attempts to teach the model how to alter its response after having executed previously unsuccessful attempts to solve a hard test-time problem, with optionally additional environment feedback. RISE poses fine-tuning for a single-turn prompt as solving a multi-turn Markov decision process (MDP), where the initial state is the prompt. Inspired by principles in online imitation learning and reinforcement learning, we propose strategies for multi-turn data collection and training so as to imbue an LLM with the capability to recursively detect and correct its previous mistakes in subsequent iterations. Our experiments show that RISE enables Llama2, Llama3, and Mistral models to improve themselves with more turns on math reasoning tasks, outperforming several single-turn strategies given an equal amount of inference-time computation. We also find that RISE scales well, often attaining larger benefits with more capable models. Our analysis shows that RISE makes meaningful improvements to responses to arrive at the correct solution for challenging prompts, without disrupting one-turn abilities as a result of expressing more complex distributions.

  • 4 authors
·
Jul 25, 2024

From f(x) and g(x) to f(g(x)): LLMs Learn New Skills in RL by Composing Old Ones

Does RL teach LLMs genuinely new skills, or does it merely activate existing ones? This question lies at the core of ongoing debates about the role of RL in LLM post-training. On one side, strong empirical results can be achieved with RL even without preceding supervised finetuning; on the other, critics argue that RL contributes little beyond reweighting existing reasoning strategies. This work provides concrete evidence that LLMs can acquire genuinely new skills during RL by composing existing ones, mirroring one of the central mechanisms by which humans acquire new cognitive skills. To mitigate data contamination and other confounding factors, and to allow precise control over task complexity, we develop a synthetic framework for our investigation. Specifically, we define a skill as the ability to infer the output of a string transformation function f(x) given x. When an LLM has already learned f and g prior to RL, our experiments reveal that RL enables it to learn unseen compositions of them h(x)=g(f(x)). Further, this compositional ability generalizes to more difficult problems such as compositions of >2 functions unseen during RL training. Surprisingly, our experiments show that compositional skill acquired on a source task transfers to a different target task. This transfer happens even without compositional training on the target, requiring only prior knowledge of the target's atomic skills. Our qualitative analysis shows that RL fundamentally changes the reasoning behaviors of the models. In contrast, next-token training with the same data yields none of these findings. Our systematic experiments provide fresh insights into LLM learning, suggesting the value of first building base models with basic skills, then using RL to incentivize advanced, generalizable skills for complex problems.

  • 10 authors
·
Sep 29, 2025 2

Flow Equivariant Recurrent Neural Networks

Data arrives at our senses as a continuous stream, smoothly transforming from one instant to the next. These smooth transformations can be viewed as continuous symmetries of the environment that we inhabit, defining equivalence relations between stimuli over time. In machine learning, neural network architectures that respect symmetries of their data are called equivariant and have provable benefits in terms of generalization ability and sample efficiency. To date, however, equivariance has been considered only for static transformations and feed-forward networks, limiting its applicability to sequence models, such as recurrent neural networks (RNNs), and corresponding time-parameterized sequence transformations. In this work, we extend equivariant network theory to this regime of `flows' -- one-parameter Lie subgroups capturing natural transformations over time, such as visual motion. We begin by showing that standard RNNs are generally not flow equivariant: their hidden states fail to transform in a geometrically structured manner for moving stimuli. We then show how flow equivariance can be introduced, and demonstrate that these models significantly outperform their non-equivariant counterparts in terms of training speed, length generalization, and velocity generalization, on both next step prediction and sequence classification. We present this work as a first step towards building sequence models that respect the time-parameterized symmetries which govern the world around us.

  • 1 authors
·
Jul 19, 2025 1

Equivariant Spatio-Temporal Self-Supervision for LiDAR Object Detection

Popular representation learning methods encourage feature invariance under transformations applied at the input. However, in 3D perception tasks like object localization and segmentation, outputs are naturally equivariant to some transformations, such as rotation. Using pre-training loss functions that encourage equivariance of features under certain transformations provides a strong self-supervision signal while also retaining information of geometric relationships between transformed feature representations. This can enable improved performance in downstream tasks that are equivariant to such transformations. In this paper, we propose a spatio-temporal equivariant learning framework by considering both spatial and temporal augmentations jointly. Our experiments show that the best performance arises with a pre-training approach that encourages equivariance to translation, scaling, and flip, rotation and scene flow. For spatial augmentations, we find that depending on the transformation, either a contrastive objective or an equivariance-by-classification objective yields best results. To leverage real-world object deformations and motion, we consider sequential LiDAR scene pairs and develop a novel 3D scene flow-based equivariance objective that leads to improved performance overall. We show our pre-training method for 3D object detection which outperforms existing equivariant and invariant approaches in many settings.

  • 5 authors
·
Apr 17, 2024

Why Not Transform Chat Large Language Models to Non-English?

The scarcity of non-English data limits the development of non-English large language models (LLMs). Transforming English-centric LLMs to non-English has been identified as an effective and resource-efficient method. Previous works start from base LLMs and perform knowledge distillation (KD) with data generated by stronger LLMs, e.g. GPT-4. Compared to base LLMs, chat LLMs are further optimized for advanced abilities, e.g. multi-turn conversation and human preference alignment, and thus more powerful in both helpfulness and safety. However, transforming a chat LLM involves two critical issues: (1) How can we effectively transfer advanced abilities without their supervised data? (2) How can we prevent the original knowledge from catastrophic forgetting during transformation? We target these issues by introducing a simple framework called TransLLM. For the first issue, TransLLM divides the transfer problem into some common sub-tasks with the translation chain-of-thought, which uses the translation as the bridge between English and non-English step-by-step. We further enhance the performance of sub-tasks with publicly available data. For the second issue, we propose a method comprising two synergistic components: low-rank adaptation for training to maintain the original LLM parameters, and recovery KD, which utilizes data generated by the chat LLM itself to recover the original knowledge from the frozen parameters. In the experiments, we transform the LLaMA-2-chat-7B to the Thai language. Our method, using only single-turn data, outperforms strong baselines and ChatGPT on multi-turn benchmark MT-bench. Furthermore, our method, without safety data, rejects more harmful queries of safety benchmark AdvBench than both ChatGPT and GPT-4.

  • 17 authors
·
May 22, 2024

You Only Teach Once: Learn One-Shot Bimanual Robotic Manipulation from Video Demonstrations

Bimanual robotic manipulation is a long-standing challenge of embodied intelligence due to its characteristics of dual-arm spatial-temporal coordination and high-dimensional action spaces. Previous studies rely on pre-defined action taxonomies or direct teleoperation to alleviate or circumvent these issues, often making them lack simplicity, versatility and scalability. Differently, we believe that the most effective and efficient way for teaching bimanual manipulation is learning from human demonstrated videos, where rich features such as spatial-temporal positions, dynamic postures, interaction states and dexterous transitions are available almost for free. In this work, we propose the YOTO (You Only Teach Once), which can extract and then inject patterns of bimanual actions from as few as a single binocular observation of hand movements, and teach dual robot arms various complex tasks. Furthermore, based on keyframes-based motion trajectories, we devise a subtle solution for rapidly generating training demonstrations with diverse variations of manipulated objects and their locations. These data can then be used to learn a customized bimanual diffusion policy (BiDP) across diverse scenes. In experiments, YOTO achieves impressive performance in mimicking 5 intricate long-horizon bimanual tasks, possesses strong generalization under different visual and spatial conditions, and outperforms existing visuomotor imitation learning methods in accuracy and efficiency. Our project link is https://hnuzhy.github.io/projects/YOTO.

  • 6 authors
·
Jan 23, 2025

A Closer Look at Rehearsal-Free Continual Learning

Continual learning is a setting where machine learning models learn novel concepts from continuously shifting training data, while simultaneously avoiding degradation of knowledge on previously seen classes which may disappear from the training data for extended periods of time (a phenomenon known as the catastrophic forgetting problem). Current approaches for continual learning of a single expanding task (aka class-incremental continual learning) require extensive rehearsal of previously seen data to avoid this degradation of knowledge. Unfortunately, rehearsal comes at a cost to memory, and it may also violate data-privacy. Instead, we explore combining knowledge distillation and parameter regularization in new ways to achieve strong continual learning performance without rehearsal. Specifically, we take a deep dive into common continual learning techniques: prediction distillation, feature distillation, L2 parameter regularization, and EWC parameter regularization. We first disprove the common assumption that parameter regularization techniques fail for rehearsal-free continual learning of a single, expanding task. Next, we explore how to leverage knowledge from a pre-trained model in rehearsal-free continual learning and find that vanilla L2 parameter regularization outperforms EWC parameter regularization and feature distillation. Finally, we explore the recently popular ImageNet-R benchmark, and show that L2 parameter regularization implemented in self-attention blocks of a ViT transformer outperforms recent popular prompting for continual learning methods.

  • 5 authors
·
Mar 31, 2022

Grounded Language Learning Fast and Slow

Recent work has shown that large text-based neural language models, trained with conventional supervised learning objectives, acquire a surprising propensity for few- and one-shot learning. Here, we show that an embodied agent situated in a simulated 3D world, and endowed with a novel dual-coding external memory, can exhibit similar one-shot word learning when trained with conventional reinforcement learning algorithms. After a single introduction to a novel object via continuous visual perception and a language prompt ("This is a dax"), the agent can re-identify the object and manipulate it as instructed ("Put the dax on the bed"). In doing so, it seamlessly integrates short-term, within-episode knowledge of the appropriate referent for the word "dax" with long-term lexical and motor knowledge acquired across episodes (i.e. "bed" and "putting"). We find that, under certain training conditions and with a particular memory writing mechanism, the agent's one-shot word-object binding generalizes to novel exemplars within the same ShapeNet category, and is effective in settings with unfamiliar numbers of objects. We further show how dual-coding memory can be exploited as a signal for intrinsic motivation, stimulating the agent to seek names for objects that may be useful for later executing instructions. Together, the results demonstrate that deep neural networks can exploit meta-learning, episodic memory and an explicitly multi-modal environment to account for 'fast-mapping', a fundamental pillar of human cognitive development and a potentially transformative capacity for agents that interact with human users.

  • 6 authors
·
Sep 3, 2020

A Comprehensive Survey of Continual Learning: Theory, Method and Application

To cope with real-world dynamics, an intelligent system needs to incrementally acquire, update, accumulate, and exploit knowledge throughout its lifetime. This ability, known as continual learning, provides a foundation for AI systems to develop themselves adaptively. In a general sense, continual learning is explicitly limited by catastrophic forgetting, where learning a new task usually results in a dramatic performance degradation of the old tasks. Beyond this, increasingly numerous advances have emerged in recent years that largely extend the understanding and application of continual learning. The growing and widespread interest in this direction demonstrates its realistic significance as well as complexity. In this work, we present a comprehensive survey of continual learning, seeking to bridge the basic settings, theoretical foundations, representative methods, and practical applications. Based on existing theoretical and empirical results, we summarize the general objectives of continual learning as ensuring a proper stability-plasticity trade-off and an adequate intra/inter-task generalizability in the context of resource efficiency. Then we provide a state-of-the-art and elaborated taxonomy, extensively analyzing how representative methods address continual learning, and how they are adapted to particular challenges in realistic applications. Through an in-depth discussion of promising directions, we believe that such a holistic perspective can greatly facilitate subsequent exploration in this field and beyond.

  • 4 authors
·
Jan 31, 2023

Continual Unlearning for Foundational Text-to-Image Models without Generalization Erosion

How can we effectively unlearn selected concepts from pre-trained generative foundation models without resorting to extensive retraining? This research introduces `continual unlearning', a novel paradigm that enables the targeted removal of multiple specific concepts from foundational generative models, incrementally. We propose Decremental Unlearning without Generalization Erosion (DUGE) algorithm which selectively unlearns the generation of undesired concepts while preserving the generation of related, non-targeted concepts and alleviating generalization erosion. For this, DUGE targets three losses: a cross-attention loss that steers the focus towards images devoid of the target concept; a prior-preservation loss that safeguards knowledge related to non-target concepts; and a regularization loss that prevents the model from suffering from generalization erosion. Experimental results demonstrate the ability of the proposed approach to exclude certain concepts without compromising the overall integrity and performance of the model. This offers a pragmatic solution for refining generative models, adeptly handling the intricacies of model training and concept management lowering the risks of copyright infringement, personal or licensed material misuse, and replication of distinctive artistic styles. Importantly, it maintains the non-targeted concepts, thereby safeguarding the model's core capabilities and effectiveness.

  • 5 authors
·
Mar 17, 2025

On the Continuity of Rotation Representations in Neural Networks

In neural networks, it is often desirable to work with various representations of the same space. For example, 3D rotations can be represented with quaternions or Euler angles. In this paper, we advance a definition of a continuous representation, which can be helpful for training deep neural networks. We relate this to topological concepts such as homeomorphism and embedding. We then investigate what are continuous and discontinuous representations for 2D, 3D, and n-dimensional rotations. We demonstrate that for 3D rotations, all representations are discontinuous in the real Euclidean spaces of four or fewer dimensions. Thus, widely used representations such as quaternions and Euler angles are discontinuous and difficult for neural networks to learn. We show that the 3D rotations have continuous representations in 5D and 6D, which are more suitable for learning. We also present continuous representations for the general case of the n-dimensional rotation group SO(n). While our main focus is on rotations, we also show that our constructions apply to other groups such as the orthogonal group and similarity transforms. We finally present empirical results, which show that our continuous rotation representations outperform discontinuous ones for several practical problems in graphics and vision, including a simple autoencoder sanity test, a rotation estimator for 3D point clouds, and an inverse kinematics solver for 3D human poses.

  • 5 authors
·
Dec 17, 2018

seq-JEPA: Autoregressive Predictive Learning of Invariant-Equivariant World Models

Current self-supervised algorithms commonly rely on transformations such as data augmentation and masking to learn visual representations. This is achieved by enforcing invariance or equivariance with respect to these transformations after encoding two views of an image. This dominant two-view paradigm often limits the flexibility of learned representations for downstream adaptation by creating performance trade-offs between high-level invariance-demanding tasks such as image classification and more fine-grained equivariance-related tasks. In this work, we proposes seq-JEPA, a world modeling framework that introduces architectural inductive biases into joint-embedding predictive architectures to resolve this trade-off. Without relying on dual equivariance predictors or loss terms, seq-JEPA simultaneously learns two architecturally segregated representations: one equivariant to specified transformations and another invariant to them. To do so, our model processes short sequences of different views (observations) of inputs. Each encoded view is concatenated with an embedding of the relative transformation (action) that produces the next observation in the sequence. These view-action pairs are passed through a transformer encoder that outputs an aggregate representation. A predictor head then conditions this aggregate representation on the upcoming action to predict the representation of the next observation. Empirically, seq-JEPA demonstrates strong performance on both equivariant and invariant benchmarks without sacrificing one for the other. Furthermore, it excels at tasks that inherently require aggregating a sequence of observations, such as path integration across actions and predictive learning across eye movements.

  • 3 authors
·
May 6, 2025