new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 7

Development and evaluation of intraoperative ultrasound segmentation with negative image frames and multiple observer labels

When developing deep neural networks for segmenting intraoperative ultrasound images, several practical issues are encountered frequently, such as the presence of ultrasound frames that do not contain regions of interest and the high variance in ground-truth labels. In this study, we evaluate the utility of a pre-screening classification network prior to the segmentation network. Experimental results demonstrate that such a classifier, minimising frame classification errors, was able to directly impact the number of false positive and false negative frames. Importantly, the segmentation accuracy on the classifier-selected frames, that would be segmented, remains comparable to or better than those from standalone segmentation networks. Interestingly, the efficacy of the pre-screening classifier was affected by the sampling methods for training labels from multiple observers, a seemingly independent problem. We show experimentally that a previously proposed approach, combining random sampling and consensus labels, may need to be adapted to perform well in our application. Furthermore, this work aims to share practical experience in developing a machine learning application that assists highly variable interventional imaging for prostate cancer patients, to present robust and reproducible open-source implementations, and to report a set of comprehensive results and analysis comparing these practical, yet important, options in a real-world clinical application.

  • 11 authors
·
Jul 28, 2021

ISLES'24: Final Infarct Prediction with Multimodal Imaging and Clinical Data. Where Do We Stand?

Accurate estimation of brain infarction (i.e., irreversibly damaged tissue) is critical for guiding treatment decisions in acute ischemic stroke. Reliable infarct prediction informs key clinical interventions, including the need for patient transfer to comprehensive stroke centers, the potential benefit of additional reperfusion attempts during mechanical thrombectomy, decisions regarding secondary neuroprotective treatments, and ultimately, prognosis of clinical outcomes. This work introduces the Ischemic Stroke Lesion Segmentation (ISLES) 2024 challenge, which focuses on the prediction of final infarct volumes from pre-interventional acute stroke imaging and clinical data. ISLES24 provides a comprehensive, multimodal setting where participants can leverage all clinically and practically available data, including full acute CT imaging, sub-acute follow-up MRI, and structured clinical information, across a train set of 150 cases. On the hidden test set of 98 cases, the top-performing model, a multimodal nnU-Net-based architecture, achieved a Dice score of 0.285 (+/- 0.213) and an absolute volume difference of 21.2 (+/- 37.2) mL, underlining the significant challenges posed by this task and the need for further advances in multimodal learning. This work makes two primary contributions: first, we establish a standardized, clinically realistic benchmark for post-treatment infarct prediction, enabling systematic evaluation of multimodal algorithmic strategies on a longitudinal stroke dataset; second, we analyze current methodological limitations and outline key research directions to guide the development of next-generation infarct prediction models.

  • 40 authors
·
Aug 20, 2024

FluoroSAM: A Language-promptable Foundation Model for Flexible X-ray Image Segmentation

Language promptable X-ray image segmentation would enable greater flexibility for human-in-the-loop workflows in diagnostic and interventional precision medicine. Prior efforts have contributed task-specific models capable of solving problems within a narrow scope, but expanding to broader use requires additional data, annotations, and training time. Recently, language-aligned foundation models (LFMs) -- machine learning models trained on large amounts of highly variable image and text data thus enabling broad applicability -- have emerged as promising tools for automated image analysis. Existing foundation models for medical image analysis focus on scenarios and modalities where large, richly annotated datasets are available. However, the X-ray imaging modality features highly variable image appearance and applications, from diagnostic chest X-rays to interventional fluoroscopy, with varying availability of data. To pave the way toward an LFM for comprehensive and language-aligned analysis of arbitrary medical X-ray images, we introduce FluoroSAM, a language-promptable variant of the Segment Anything Model, trained from scratch on 3M synthetic X-ray images from a wide variety of human anatomies, imaging geometries, and viewing angles. These include pseudo-ground truth masks for 128 organ types and 464 tools with associated text descriptions. FluoroSAM is capable of segmenting myriad anatomical structures and tools based on natural language prompts, thanks to the novel incorporation of vector quantization (VQ) of text embeddings in the training process. We demonstrate FluoroSAM's performance quantitatively on real X-ray images and showcase on several applications how FluoroSAM is a key enabler for rich human-machine interaction in the X-ray image acquisition and analysis context. Code is available at https://github.com/arcadelab/fluorosam.

  • 8 authors
·
Mar 12, 2024