new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 31

Breaking Class Barriers: Efficient Dataset Distillation via Inter-Class Feature Compensator

Dataset distillation has emerged as a technique aiming to condense informative features from large, natural datasets into a compact and synthetic form. While recent advancements have refined this technique, its performance is bottlenecked by the prevailing class-specific synthesis paradigm. Under this paradigm, synthetic data is optimized exclusively for a pre-assigned one-hot label, creating an implicit class barrier in feature condensation. This leads to inefficient utilization of the distillation budget and oversight of inter-class feature distributions, which ultimately limits the effectiveness and efficiency, as demonstrated in our analysis. To overcome these constraints, this paper presents the Inter-class Feature Compensator (INFER), an innovative distillation approach that transcends the class-specific data-label framework widely utilized in current dataset distillation methods. Specifically, INFER leverages a Universal Feature Compensator (UFC) to enhance feature integration across classes, enabling the generation of multiple additional synthetic instances from a single UFC input. This significantly improves the efficiency of the distillation budget. Moreover, INFER enriches inter-class interactions during the distillation, thereby enhancing the effectiveness and generalizability of the distilled data. By allowing for the linear interpolation of labels similar to those in the original dataset, INFER meticulously optimizes the synthetic data and dramatically reduces the size of soft labels in the synthetic dataset to almost zero, establishing a new benchmark for efficiency and effectiveness in dataset distillation.

  • 4 authors
·
Aug 13, 2024

A Brain Wave Encodes a Thousand Tokens: Modeling Inter-Cortical Neural Interactions for Effective EEG-based Emotion Recognition

Human emotions are difficult to convey through words and are often abstracted in the process; however, electroencephalogram (EEG) signals can offer a more direct lens into emotional brain activity. Recent studies show that deep learning models can process these signals to perform emotion recognition with high accuracy. However, many existing approaches overlook the dynamic interplay between distinct brain regions, which can be crucial to understanding how emotions unfold and evolve over time, potentially aiding in more accurate emotion recognition. To address this, we propose RBTransformer, a Transformer-based neural network architecture that models inter-cortical neural dynamics of the brain in latent space to better capture structured neural interactions for effective EEG-based emotion recognition. First, the EEG signals are converted into Band Differential Entropy (BDE) tokens, which are then passed through Electrode Identity embeddings to retain spatial provenance. These tokens are processed through successive inter-cortical multi-head attention blocks that construct an electrode x electrode attention matrix, allowing the model to learn the inter-cortical neural dependencies. The resulting features are then passed through a classification head to obtain the final prediction. We conducted extensive experiments, specifically under subject-dependent settings, on the SEED, DEAP, and DREAMER datasets, over all three dimensions, Valence, Arousal, and Dominance (for DEAP and DREAMER), under both binary and multi-class classification settings. The results demonstrate that the proposed RBTransformer outperforms all previous state-of-the-art methods across all three datasets, over all three dimensions under both classification settings. The source code is available at: https://github.com/nnilayy/RBTransformer.

  • 3 authors
·
Nov 17 2