new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 7

Leveraging ASIC AI Chips for Homomorphic Encryption

Cloud-based services are making the outsourcing of sensitive client data increasingly common. Although homomorphic encryption (HE) offers strong privacy guarantee, it requires substantially more resources than computing on plaintext, often leading to unacceptably large latencies in getting the results. HE accelerators have emerged to mitigate this latency issue, but with the high cost of ASICs. In this paper we show that HE primitives can be converted to AI operators and accelerated on existing ASIC AI accelerators, like TPUs, which are already widely deployed in the cloud. Adapting such accelerators for HE requires (1) supporting modular multiplication, (2) high-precision arithmetic in software, and (3) efficient mapping on matrix engines. We introduce the CROSS compiler (1) to adopt Barrett reduction to provide modular reduction support using multiplier and adder, (2) Basis Aligned Transformation (BAT) to convert high-precision multiplication as low-precision matrix-vector multiplication, (3) Matrix Aligned Transformation (MAT) to covert vectorized modular operation with reduction into matrix multiplication that can be efficiently processed on 2D spatial matrix engine. Our evaluation of CROSS on a Google TPUv4 demonstrates significant performance improvements, with up to 161x and 5x speedup compared to the previous work on many-core CPUs and V100. The kernel-level codes are open-sourced at https://github.com/google/jaxite/tree/main/jaxite_word.

  • 11 authors
·
Jan 12, 2025

XR-NPE: High-Throughput Mixed-precision SIMD Neural Processing Engine for Extended Reality Perception Workloads

This work proposes XR-NPE, a high-throughput Mixed-precision SIMD Neural Processing Engine, designed for extended reality (XR) perception workloads like visual inertial odometry (VIO), object classification, and eye gaze extraction. XR-NPE is first to support FP4, Posit (4,1), Posit (8,0), and Posit (16,1) formats, with layer adaptive hybrid-algorithmic implementation supporting ultra-low bit precision to significantly reduce memory bandwidth requirements, and accompanied by quantization-aware training for minimal accuracy loss. The proposed Reconfigurable Mantissa Multiplication and Exponent processing Circuitry (RMMEC) reduces dark silicon in the SIMD MAC compute engine, assisted by selective power gating to reduce energy consumption, providing 2.85x improved arithmetic intensity. XR-NPE achieves a maximum operating frequency of 1.72 GHz, area 0.016 mm2 , and arithmetic intensity 14 pJ at CMOS 28nm, reducing 42% area, 38% power compared to the best of state-of-the-art MAC approaches. The proposed XR-NPE based AXI-enabled Matrix-multiplication co-processor consumes 1.4x fewer LUTs, 1.77x fewer FFs, and provides 1.2x better energy efficiency compared to SoTA accelerators on VCU129. The proposed co-processor provides 23% better energy efficiency and 4% better compute density for VIO workloads. XR-NPE establishes itself as a scalable, precision-adaptive compute engine for future resource-constrained XR devices. The complete set for codes for results reproducibility are released publicly, enabling designers and researchers to readily adopt and build upon them. https://github.com/mukullokhande99/XR-NPE.

  • 5 authors
·
Aug 18, 2025 1

Formal that "Floats" High: Formal Verification of Floating Point Arithmetic

Formal verification of floating-point arithmetic remains challenging due to non-linear arithmetic behavior and the tight coupling between control and datapath logic. Existing approaches often rely on high-level C models for equivalence checking against Register Transfer Level (RTL) designs, but this introduces abstraction gaps, translation overhead, and limits scalability at the RTL level. To address these challenges, this paper presents a scalable methodology for verifying floating-point arithmetic using direct RTL-to-RTL model checking against a golden reference model. The approach adopts a divide-and conquer strategy that decomposes verification into modular stages, each captured by helper assertions and lemmas that collectively prove a main correctness theorem. Counterexample (CEX)-guided refinement is used to iteratively localize and resolve implementation defects, while targeted fault injection validates the robustness of the verification process against precision-critical datapath errors. To assess scalability and practicality, the methodology is extended with agentic AI-based formal property generation, integrating large language model (LLM)-driven automation with Human-in-the-Loop (HITL) refinement. Coverage analysis evaluates the effectiveness of the approach by comparing handwritten and AI-generated properties in both RTL-to-RTL model checking and standalone RTL verification settings. Results show that direct RTL-to-RTL model checking achieves higher coverage efficiency and requires fewer assertions than standalone verification, especially when combined with AI-generated properties refined through HITL guidance.

  • 3 authors
·
Dec 7, 2025