Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeAbout Graph Degeneracy, Representation Learning and Scalability
Graphs or networks are a very convenient way to represent data with lots of interaction. Recently, Machine Learning on Graph data has gained a lot of traction. In particular, vertex classification and missing edge detection have very interesting applications, ranging from drug discovery to recommender systems. To achieve such tasks, tremendous work has been accomplished to learn embedding of nodes and edges into finite-dimension vector spaces. This task is called Graph Representation Learning. However, Graph Representation Learning techniques often display prohibitive time and memory complexities, preventing their use in real-time with business size graphs. In this paper, we address this issue by leveraging a degeneracy property of Graphs - the K-Core Decomposition. We present two techniques taking advantage of this decomposition to reduce the time and memory consumption of walk-based Graph Representation Learning algorithms. We evaluate the performances, expressed in terms of quality of embedding and computational resources, of the proposed techniques on several academic datasets. Our code is available at https://github.com/SBrandeis/kcore-embedding
CRAKEN: Cybersecurity LLM Agent with Knowledge-Based Execution
Large Language Model (LLM) agents can automate cybersecurity tasks and can adapt to the evolving cybersecurity landscape without re-engineering. While LLM agents have demonstrated cybersecurity capabilities on Capture-The-Flag (CTF) competitions, they have two key limitations: accessing latest cybersecurity expertise beyond training data, and integrating new knowledge into complex task planning. Knowledge-based approaches that incorporate technical understanding into the task-solving automation can tackle these limitations. We present CRAKEN, a knowledge-based LLM agent framework that improves cybersecurity capability through three core mechanisms: contextual decomposition of task-critical information, iterative self-reflected knowledge retrieval, and knowledge-hint injection that transforms insights into adaptive attack strategies. Comprehensive evaluations with different configurations show CRAKEN's effectiveness in multi-stage vulnerability detection and exploitation compared to previous approaches. Our extensible architecture establishes new methodologies for embedding new security knowledge into LLM-driven cybersecurity agentic systems. With a knowledge database of CTF writeups, CRAKEN obtained an accuracy of 22% on NYU CTF Bench, outperforming prior works by 3% and achieving state-of-the-art results. On evaluation of MITRE ATT&CK techniques, CRAKEN solves 25-30% more techniques than prior work, demonstrating improved cybersecurity capabilities via knowledge-based execution. We make our framework open source to public https://github.com/NYU-LLM-CTF/nyuctf_agents_craken.
Approximately Optimal Core Shapes for Tensor Decompositions
This work studies the combinatorial optimization problem of finding an optimal core tensor shape, also called multilinear rank, for a size-constrained Tucker decomposition. We give an algorithm with provable approximation guarantees for its reconstruction error via connections to higher-order singular values. Specifically, we introduce a novel Tucker packing problem, which we prove is NP-hard, and give a polynomial-time approximation scheme based on a reduction to the 2-dimensional knapsack problem with a matroid constraint. We also generalize our techniques to tree tensor network decompositions. We implement our algorithm using an integer programming solver, and show that its solution quality is competitive with (and sometimes better than) the greedy algorithm that uses the true Tucker decomposition loss at each step, while also running up to 1000x faster.
Can Atomic Step Decomposition Enhance the Self-structured Reasoning of Multimodal Large Models?
In this paper, we address the challenging task of multimodal mathematical reasoning by incorporating the ability of "slow thinking" into multimodal large language models (MLLMs). Our core idea is that different levels of reasoning abilities can be combined dynamically to tackle questions with different complexity. To this end, we propose a paradigm of Self-structured Chain of Thought (SCoT), which is composed of minimal semantic atomic steps. Different from existing methods that rely on structured templates or free-form paradigms, our method can not only generate cognitive CoT structures for various complex tasks but also mitigates the phenomenon of overthinking. To introduce structured reasoning capabilities into visual understanding models, we further design a novel AtomThink framework with four key modules, including (i) a data engine to generate high-quality multimodal reasoning paths; (ii) a supervised fine-tuning process with serialized inference data; (iii) a policy-guided multi-turn inference method; and (iv) an atomic capability metric to evaluate the single step utilization rate. We conduct extensive experiments to show that the proposed AtomThink significantly improves the performance of baseline MLLMs, achieving more than 10\% average accuracy gains on MathVista and MathVerse. Compared to state-of-the-art structured CoT approaches, our method not only achieves higher accuracy but also improves data utilization by 5 times and boosts inference efficiency by 85.3\%. Our code is now public available in https://github.com/Quinn777/AtomThink.
Lighting up NeRF via Unsupervised Decomposition and Enhancement
Neural Radiance Field (NeRF) is a promising approach for synthesizing novel views, given a set of images and the corresponding camera poses of a scene. However, images photographed from a low-light scene can hardly be used to train a NeRF model to produce high-quality results, due to their low pixel intensities, heavy noise, and color distortion. Combining existing low-light image enhancement methods with NeRF methods also does not work well due to the view inconsistency caused by the individual 2D enhancement process. In this paper, we propose a novel approach, called Low-Light NeRF (or LLNeRF), to enhance the scene representation and synthesize normal-light novel views directly from sRGB low-light images in an unsupervised manner. The core of our approach is a decomposition of radiance field learning, which allows us to enhance the illumination, reduce noise and correct the distorted colors jointly with the NeRF optimization process. Our method is able to produce novel view images with proper lighting and vivid colors and details, given a collection of camera-finished low dynamic range (8-bits/channel) images from a low-light scene. Experiments demonstrate that our method outperforms existing low-light enhancement methods and NeRF methods.
EmerNeRF: Emergent Spatial-Temporal Scene Decomposition via Self-Supervision
We present EmerNeRF, a simple yet powerful approach for learning spatial-temporal representations of dynamic driving scenes. Grounded in neural fields, EmerNeRF simultaneously captures scene geometry, appearance, motion, and semantics via self-bootstrapping. EmerNeRF hinges upon two core components: First, it stratifies scenes into static and dynamic fields. This decomposition emerges purely from self-supervision, enabling our model to learn from general, in-the-wild data sources. Second, EmerNeRF parameterizes an induced flow field from the dynamic field and uses this flow field to further aggregate multi-frame features, amplifying the rendering precision of dynamic objects. Coupling these three fields (static, dynamic, and flow) enables EmerNeRF to represent highly-dynamic scenes self-sufficiently, without relying on ground truth object annotations or pre-trained models for dynamic object segmentation or optical flow estimation. Our method achieves state-of-the-art performance in sensor simulation, significantly outperforming previous methods when reconstructing static (+2.93 PSNR) and dynamic (+3.70 PSNR) scenes. In addition, to bolster EmerNeRF's semantic generalization, we lift 2D visual foundation model features into 4D space-time and address a general positional bias in modern Transformers, significantly boosting 3D perception performance (e.g., 37.50% relative improvement in occupancy prediction accuracy on average). Finally, we construct a diverse and challenging 120-sequence dataset to benchmark neural fields under extreme and highly-dynamic settings.
Solving Formal Math Problems by Decomposition and Iterative Reflection
General-purpose Large Language Models (LLMs) have achieved remarkable success in intelligence, performing comparably to human experts on complex reasoning tasks such as coding and mathematical reasoning. However, generating formal proofs in specialized languages like Lean 4 remains a significant challenge for these models, limiting their application in complex theorem proving and automated verification. Current approaches typically require specializing models through fine-tuning on dedicated formal corpora, incurring high costs for data collection and training. In this work, we introduce Delta Prover, an agent-based framework that orchestrates the interaction between a general-purpose LLM and the Lean 4 proof environment. Delta Prover leverages the reflection and reasoning capabilities of general-purpose LLMs to interactively construct formal proofs in Lean 4, circumventing the need for model specialization. At its core, the agent integrates two novel, interdependent components: an algorithmic framework for reflective decomposition and iterative proof repair, and a custom Domain-Specific Language (DSL) built upon Lean 4 for streamlined subproblem management. Delta Prover achieves a state-of-the-art 95.9\% success rate on the miniF2F-test benchmark, surpassing all existing approaches, including those requiring model specialization. Furthermore, Delta Prover exhibits a significantly stronger test-time scaling law compared to standard Best-of-N proof strategies. Crucially, our findings demonstrate that general-purpose LLMs, when guided by an effective agentic structure, possess substantial untapped theorem-proving capabilities. This presents a computationally efficient alternative to specialized models for robust automated reasoning in formal environments.
MatDecompSDF: High-Fidelity 3D Shape and PBR Material Decomposition from Multi-View Images
We present MatDecompSDF, a novel framework for recovering high-fidelity 3D shapes and decomposing their physically-based material properties from multi-view images. The core challenge of inverse rendering lies in the ill-posed disentanglement of geometry, materials, and illumination from 2D observations. Our method addresses this by jointly optimizing three neural components: a neural Signed Distance Function (SDF) to represent complex geometry, a spatially-varying neural field for predicting PBR material parameters (albedo, roughness, metallic), and an MLP-based model for capturing unknown environmental lighting. The key to our approach is a physically-based differentiable rendering layer that connects these 3D properties to the input images, allowing for end-to-end optimization. We introduce a set of carefully designed physical priors and geometric regularizations, including a material smoothness loss and an Eikonal loss, to effectively constrain the problem and achieve robust decomposition. Extensive experiments on both synthetic and real-world datasets (e.g., DTU) demonstrate that MatDecompSDF surpasses state-of-the-art methods in geometric accuracy, material fidelity, and novel view synthesis. Crucially, our method produces editable and relightable assets that can be seamlessly integrated into standard graphics pipelines, validating its practical utility for digital content creation.
Compressing Neural Networks: Towards Determining the Optimal Layer-wise Decomposition
We present a novel global compression framework for deep neural networks that automatically analyzes each layer to identify the optimal per-layer compression ratio, while simultaneously achieving the desired overall compression. Our algorithm hinges on the idea of compressing each convolutional (or fully-connected) layer by slicing its channels into multiple groups and decomposing each group via low-rank decomposition. At the core of our algorithm is the derivation of layer-wise error bounds from the Eckart Young Mirsky theorem. We then leverage these bounds to frame the compression problem as an optimization problem where we wish to minimize the maximum compression error across layers and propose an efficient algorithm towards a solution. Our experiments indicate that our method outperforms existing low-rank compression approaches across a wide range of networks and data sets. We believe that our results open up new avenues for future research into the global performance-size trade-offs of modern neural networks. Our code is available at https://github.com/lucaslie/torchprune.
FLoRA: Low-Rank Core Space for N-dimension
Adapting pre-trained foundation models for various downstream tasks has been prevalent in artificial intelligence. Due to the vast number of tasks and high costs, adjusting all parameters becomes unfeasible. To mitigate this, several fine-tuning techniques have been developed to update the pre-trained model weights in a more resource-efficient manner, such as through low-rank adjustments. Yet, almost all of these methods focus on linear weights, neglecting the intricacies of parameter spaces in higher dimensions like 4D. Alternatively, some methods can be adapted for high-dimensional parameter space by compressing changes in the original space into two dimensions and then employing low-rank matrix decomposition. However, these approaches destructs the structural integrity of the involved high-dimensional spaces. To tackle the diversity of dimensional spaces across different foundation models and provide a more precise representation of the changes within these spaces, this paper introduces a generalized parameter-efficient fine-tuning framework, FLoRA, designed for various dimensional parameter space. Specifically, utilizing Tucker decomposition, FLoRA asserts that changes in each dimensional parameter space are based on a low-rank core space which maintains the consistent topological structure with the original space. It then models the changes through this core space alongside corresponding weights to reconstruct alterations in the original space. FLoRA effectively preserves the structural integrity of the change of original N-dimensional parameter space, meanwhile decomposes it via low-rank tensor decomposition. Extensive experiments on computer vision, natural language processing and multi-modal tasks validate FLoRA's effectiveness. Codes are available at https://github.com/SJTU-DeepVisionLab/FLoRA.
Functional Bayesian Tucker Decomposition for Continuous-indexed Tensor Data
Tucker decomposition is a powerful tensor model to handle multi-aspect data. It demonstrates the low-rank property by decomposing the grid-structured data as interactions between a core tensor and a set of object representations (factors). A fundamental assumption of such decomposition is that there are finite objects in each aspect or mode, corresponding to discrete indexes of data entries. However, real-world data is often not naturally posed in this setting. For example, geographic data is represented as continuous indexes of latitude and longitude coordinates, and cannot fit tensor models directly. To generalize Tucker decomposition to such scenarios, we propose Functional Bayesian Tucker Decomposition (FunBaT). We treat the continuous-indexed data as the interaction between the Tucker core and a group of latent functions. We use Gaussian processes (GP) as functional priors to model the latent functions. Then, we convert each GP into a state-space prior by constructing an equivalent stochastic differential equation (SDE) to reduce computational cost. An efficient inference algorithm is developed for scalable posterior approximation based on advanced message-passing techniques. The advantage of our method is shown in both synthetic data and several real-world applications. We release the code of FunBaT at https://github.com/xuangu-fang/Functional-Bayesian-Tucker-Decomposition.
Redefining Experts: Interpretable Decomposition of Language Models for Toxicity Mitigation
Large Language Models have demonstrated impressive fluency across diverse tasks, yet their tendency to produce toxic content remains a critical challenge for AI safety and public trust. Existing toxicity mitigation approaches primarily manipulate individual neuron activations, but these methods suffer from instability, context dependence, and often compromise the model's core language abilities. To address these shortcomings, we investigate three key questions: the stability of neuron-level toxicity indicators, the advantages of structural (layer-wise) representations, and the interpretability of mechanisms driving toxic generation. Through extensive experiments on Jigsaw and ToxiCN datasets, we show that aggregated layer-wise features provide more robust signals than single neurons. Moreover, we observe conceptual limitations in prior works that conflate toxicity detection experts and generation experts within neuron-based interventions. To mitigate this, we propose a novel principled intervention technique, EigenShift, based on eigen-decomposition of the language model's final output layer. This method selectively targets generation-aligned components, enabling precise toxicity suppression without impairing linguistic competence. Our method requires no additional training or fine-tuning, incurs minimal computational cost, and is grounded in rigorous theoretical analysis.
SiTH: Single-view Textured Human Reconstruction with Image-Conditioned Diffusion
A long-standing goal of 3D human reconstruction is to create lifelike and fully detailed 3D humans from single images. The main challenge lies in inferring unknown human shapes, clothing, and texture information in areas not visible in the images. To address this, we propose SiTH, a novel pipeline that uniquely integrates an image-conditioned diffusion model into a 3D mesh reconstruction workflow. At the core of our method lies the decomposition of the ill-posed single-view reconstruction problem into hallucination and reconstruction subproblems. For the former, we employ a powerful generative diffusion model to hallucinate back appearances from the input images. For the latter, we leverage skinned body meshes as guidance to recover full-body texture meshes from the input and back-view images. Our designs enable training of the pipeline with only about 500 3D human scans while maintaining its generality and robustness. Extensive experiments and user studies on two 3D reconstruction benchmarks demonstrated the efficacy of our method in generating realistic, fully textured 3D humans from a diverse range of unseen images.
Identifying supermassive black hole recoil in elliptical galaxies
We study stellar core growth in simulations of merging massive (M_star>10^{11},M_odot) elliptical galaxies by a supermassive black hole (SMBH) displaced by gravitational wave induced recoil velocity. With controlled, dense sampling of the SMBH recoil velocity, we find the core radius originally formed by SMBH binary scouring can grow by a factor of 2-3 when the recoil velocity exceeds sim50 per cent of the central escape velocity, and the mass deficit grows by up to a factor of sim4. Using Bayesian inference we predict the distribution of stellar core sizes formed through this process to peak at sim1,kpc. An orbital decomposition of stellar particles within the core reveals that radial orbits dominate over tube orbits when the recoil velocity exceeds the velocity dispersion of the core, whereas tube orbits dominate for the lowest recoil kicks. A change in orbital structure is reflected in the anisotropy parameter, with a central tangential bias present only for recoil velocities less than the local stellar velocity dispersion. Emulating current integral field unit observations of the stellar line-of-sight velocity distribution, we uncover a distinct signature in the Gauss-Hermite symmetric deviation coefficient h_4 that uniquely constrains the core size due to binary scouring. This signature is insensitive to the later evolution of the stellar mass distribution due to SMBH recoil. Our results provide a novel method to estimate the SMBH recoil magnitude from observations of local elliptical galaxies, and implies these galaxies primarily experienced recoil velocities less than the stellar velocity dispersion of the core.
HunyuanWorld 1.0: Generating Immersive, Explorable, and Interactive 3D Worlds from Words or Pixels
Creating immersive and playable 3D worlds from texts or images remains a fundamental challenge in computer vision and graphics. Existing world generation approaches typically fall into two categories: video-based methods that offer rich diversity but lack 3D consistency and rendering efficiency, and 3D-based methods that provide geometric consistency but struggle with limited training data and memory-inefficient representations. To address these limitations, we present HunyuanWorld 1.0, a novel framework that combines the best of both worlds for generating immersive, explorable, and interactive 3D scenes from text and image conditions. Our approach features three key advantages: 1) 360{\deg} immersive experiences via panoramic world proxies; 2) mesh export capabilities for seamless compatibility with existing computer graphics pipelines; 3) disentangled object representations for augmented interactivity. The core of our framework is a semantically layered 3D mesh representation that leverages panoramic images as 360{\deg} world proxies for semantic-aware world decomposition and reconstruction, enabling the generation of diverse 3D worlds. Extensive experiments demonstrate that our method achieves state-of-the-art performance in generating coherent, explorable, and interactive 3D worlds while enabling versatile applications in virtual reality, physical simulation, game development, and interactive content creation.
DeCoT: Decomposing Complex Instructions for Enhanced Text-to-Image Generation with Large Language Models
Despite remarkable advancements, current Text-to-Image (T2I) models struggle with complex, long-form textual instructions, frequently failing to accurately render intricate details, spatial relationships, or specific constraints. This limitation is highlighted by benchmarks such as LongBench-T2I, which reveal deficiencies in handling composition, specific text, and fine textures. To address this, we propose DeCoT (Decomposition-CoT), a novel framework that leverages Large Language Models (LLMs) to significantly enhance T2I models' understanding and execution of complex instructions. DeCoT operates in two core stages: first, Complex Instruction Decomposition and Semantic Enhancement, where an LLM breaks down raw instructions into structured, actionable semantic units and clarifies ambiguities; second, Multi-Stage Prompt Integration and Adaptive Generation, which transforms these units into a hierarchical or optimized single prompt tailored for existing T2I models. Extensive experiments on the LongBench-T2I dataset demonstrate that DeCoT consistently and substantially improves the performance of leading T2I models across all evaluated dimensions, particularly in challenging aspects like "Text" and "Composition". Quantitative results, validated by multiple MLLM evaluators (Gemini-2.0-Flash and InternVL3-78B), show that DeCoT, when integrated with Infinity-8B, achieves an average score of 3.52, outperforming the baseline Infinity-8B (3.44). Ablation studies confirm the critical contribution of each DeCoT component and the importance of sophisticated LLM prompting. Furthermore, human evaluations corroborate these findings, indicating superior perceptual quality and instruction fidelity. DeCoT effectively bridges the gap between high-level user intent and T2I model requirements, leading to more faithful and accurate image generation.
Several questions of visual generation in 2024
This paper does not propose any new algorithms but instead outlines various problems in the field of visual generation based on the author's personal understanding. The core of these problems lies in how to decompose visual signals, with all other issues being closely related to this central problem and stemming from unsuitable approaches to signal decomposition. This paper aims to draw researchers' attention to the significance of Visual Signal Decomposition.
PixArt-$α$: Fast Training of Diffusion Transformer for Photorealistic Text-to-Image Synthesis
The most advanced text-to-image (T2I) models require significant training costs (e.g., millions of GPU hours), seriously hindering the fundamental innovation for the AIGC community while increasing CO2 emissions. This paper introduces PIXART-alpha, a Transformer-based T2I diffusion model whose image generation quality is competitive with state-of-the-art image generators (e.g., Imagen, SDXL, and even Midjourney), reaching near-commercial application standards. Additionally, it supports high-resolution image synthesis up to 1024px resolution with low training cost, as shown in Figure 1 and 2. To achieve this goal, three core designs are proposed: (1) Training strategy decomposition: We devise three distinct training steps that separately optimize pixel dependency, text-image alignment, and image aesthetic quality; (2) Efficient T2I Transformer: We incorporate cross-attention modules into Diffusion Transformer (DiT) to inject text conditions and streamline the computation-intensive class-condition branch; (3) High-informative data: We emphasize the significance of concept density in text-image pairs and leverage a large Vision-Language model to auto-label dense pseudo-captions to assist text-image alignment learning. As a result, PIXART-alpha's training speed markedly surpasses existing large-scale T2I models, e.g., PIXART-alpha only takes 10.8% of Stable Diffusion v1.5's training time (675 vs. 6,250 A100 GPU days), saving nearly \300,000 (26,000 vs. \320,000) and reducing 90% CO2 emissions. Moreover, compared with a larger SOTA model, RAPHAEL, our training cost is merely 1%. Extensive experiments demonstrate that PIXART-\alpha excels in image quality, artistry, and semantic control. We hope PIXART-\alpha$ will provide new insights to the AIGC community and startups to accelerate building their own high-quality yet low-cost generative models from scratch.
SynTSBench: Rethinking Temporal Pattern Learning in Deep Learning Models for Time Series
Recent advances in deep learning have driven rapid progress in time series forecasting, yet many state-of-the-art models continue to struggle with robust performance in real-world applications, even when they achieve strong results on standard benchmark datasets. This persistent gap can be attributed to the black-box nature of deep learning architectures and the inherent limitations of current evaluation frameworks, which frequently lack the capacity to provide clear, quantitative insights into the specific strengths and weaknesses of different models, thereby complicating the selection of appropriate models for particular forecasting scenarios. To address these issues, we propose a synthetic data-driven evaluation paradigm, SynTSBench, that systematically assesses fundamental modeling capabilities of time series forecasting models through programmable feature configuration. Our framework isolates confounding factors and establishes an interpretable evaluation system with three core analytical dimensions: (1) temporal feature decomposition and capability mapping, which enables systematic evaluation of model capacities to learn specific pattern types; (2) robustness analysis under data irregularities, which quantifies noise tolerance thresholds and anomaly recovery capabilities; and (3) theoretical optimum benchmarking, which establishes performance boundaries for each pattern type-enabling direct comparison between model predictions and mathematical optima. Our experiments show that current deep learning models do not universally approach optimal baselines across all types of temporal features.The code is available at https://github.com/TanQitai/SynTSBench
Parameter-Efficient Mixture-of-Experts Architecture for Pre-trained Language Models
Recently, Mixture-of-Experts (short as MoE) architecture has achieved remarkable success in increasing the model capacity of large-scale language models. However, MoE requires incorporating significantly more parameters than the base model being extended. In this paper, we propose building a parameter-efficient MoE architecture by sharing information among experts. We adopt the matrix product operator (MPO, a tensor decomposition from quantum many-body physics) to reconstruct the parameter matrix in the expert layer and increase model capacity for pre-trained language models by sharing parameters of the central tensor (containing the core information) among different experts while enabling the specificity through the auxiliary tensors (complementing the central tensor) of different experts. To address the unbalanced optimization issue, we further design the gradient mask strategy for the MPO-based MoE architecture. Extensive experiments based on T5 and GPT-2 show improved performance and efficiency of the pre-trained language model (27.2x reduction in total parameters for the superior model performance, compared with the Switch Transformers). Our code is publicly available at https://github.com/RUCAIBox/MPOE.
Which Prompting Technique Should I Use? An Empirical Investigation of Prompting Techniques for Software Engineering Tasks
A growing variety of prompt engineering techniques has been proposed for Large Language Models (LLMs), yet systematic evaluation of each technique on individual software engineering (SE) tasks remains underexplored. In this study, we present a systematic evaluation of 14 established prompt techniques across 10 SE tasks using four LLM models. As identified in the prior literature, the selected prompting techniques span six core dimensions (Zero-Shot, Few-Shot, Thought Generation, Ensembling, Self-Criticism, and Decomposition). They are evaluated on tasks such as code generation, bug fixing, and code-oriented question answering, to name a few. Our results show which prompting techniques are most effective for SE tasks requiring complex logic and intensive reasoning versus those that rely more on contextual understanding and example-driven scenarios. We also analyze correlations between the linguistic characteristics of prompts and the factors that contribute to the effectiveness of prompting techniques in enhancing performance on SE tasks. Additionally, we report the time and token consumption for each prompting technique when applied to a specific task and model, offering guidance for practitioners in selecting the optimal prompting technique for their use cases.
A mesh-free hybrid Chebyshev-Tucker tensor format with applications to multi-particle modelling
In this paper, we introduce a mesh-free two-level hybrid Tucker tensor format for approximation of multivariate functions, which combines the product Chebyshev interpolation with the ALS-based Tucker decomposition of the tensor of Chebyshev coefficients. It allows to avoid the expenses of the rank-structured approximation of function-related tensors defined on large spacial grids, while benefiting from the Tucker decomposition of the rather small core tensor of Chebyshev coefficients. This leads to nearly optimal Tucker rank parameters which are close to the results for well established Tucker-ALS algorithm applied to the large grid-based tensors. These rank parameters inherited from the Tucker-ALS decomposition of the coefficient tensor can be much less than the polynomial degrees of the initial Chebyshev interpolant via function independent basis set. Furthermore, the tensor product Chebyshev polynomials discretized on a tensor grid leads to a low-rank two-level orthogonal algebraic Tucker tensor that approximates the initial function with controllable accuracy. It is shown that our techniques could be gainfully applied to the long-range part of the electrostatic potential of multi-particle systems approximated in the range-separated tensor format. Error and complexity estimates of the proposed methods are presented. We demonstrate the efficiency of the suggested method numerically on examples of the long-range components of multi-particle interaction potentials generated by 3D Newton kernel for large bio-molecule systems and lattice-type compounds.
TensorLLM: Tensorising Multi-Head Attention for Enhanced Reasoning and Compression in LLMs
The reasoning abilities of Large Language Models (LLMs) can be improved by structurally denoising their weights, yet existing techniques primarily focus on denoising the feed-forward network (FFN) of the transformer block, and can not efficiently utilise the Multi-head Attention (MHA) block, which is the core of transformer architectures. To address this issue, we propose a novel intuitive framework that, at its very core, performs MHA compression through a multi-head tensorisation process and the Tucker decomposition. This enables both higher-dimensional structured denoising and compression of the MHA weights, by enforcing a shared higher-dimensional subspace across the weights of the multiple attention heads. We demonstrate that this approach consistently enhances the reasoning capabilities of LLMs across multiple benchmark datasets, and for both encoder-only and decoder-only architectures, while achieving compression rates of up to sim 250 times in the MHA weights, all without requiring any additional data, training, or fine-tuning. Furthermore, we show that the proposed method can be seamlessly combined with existing FFN-only-based denoising techniques to achieve further improvements in LLM reasoning performance.
RealisVSR: Detail-enhanced Diffusion for Real-World 4K Video Super-Resolution
Video Super-Resolution (VSR) has achieved significant progress through diffusion models, effectively addressing the over-smoothing issues inherent in GAN-based methods. Despite recent advances, three critical challenges persist in VSR community: 1) Inconsistent modeling of temporal dynamics in foundational models; 2) limited high-frequency detail recovery under complex real-world degradations; and 3) insufficient evaluation of detail enhancement and 4K super-resolution, as current methods primarily rely on 720P datasets with inadequate details. To address these challenges, we propose RealisVSR, a high-frequency detail-enhanced video diffusion model with three core innovations: 1) Consistency Preserved ControlNet (CPC) architecture integrated with the Wan2.1 video diffusion to model the smooth and complex motions and suppress artifacts; 2) High-Frequency Rectified Diffusion Loss (HR-Loss) combining wavelet decomposition and HOG feature constraints for texture restoration; 3) RealisVideo-4K, the first public 4K VSR benchmark containing 1,000 high-definition video-text pairs. Leveraging the advanced spatio-temporal guidance of Wan2.1, our method requires only 5-25% of the training data volume compared to existing approaches. Extensive experiments on VSR benchmarks (REDS, SPMCS, UDM10, YouTube-HQ, VideoLQ, RealisVideo-720P) demonstrate our superiority, particularly in ultra-high-resolution scenarios.
