- AmbiGen: Generating Ambigrams from Pre-trained Diffusion Model Ambigrams are calligraphic designs that have different meanings depending on the viewing orientation. Creating ambigrams is a challenging task even for skilled artists, as it requires maintaining the meaning under two different viewpoints at the same time. In this work, we propose to generate ambigrams by distilling a large-scale vision and language diffusion model, namely DeepFloyd IF, to optimize the letters' outline for legibility in the two viewing orientations. Empirically, we demonstrate that our approach outperforms existing ambigram generation methods. On the 500 most common words in English, our method achieves more than an 11.6% increase in word accuracy and at least a 41.9% reduction in edit distance. 3 authors · Dec 5, 2023
- A Theory of Topological Derivatives for Inverse Rendering of Geometry We introduce a theoretical framework for differentiable surface evolution that allows discrete topology changes through the use of topological derivatives for variational optimization of image functionals. While prior methods for inverse rendering of geometry rely on silhouette gradients for topology changes, such signals are sparse. In contrast, our theory derives topological derivatives that relate the introduction of vanishing holes and phases to changes in image intensity. As a result, we enable differentiable shape perturbations in the form of hole or phase nucleation. We validate the proposed theory with optimization of closed curves in 2D and surfaces in 3D to lend insights into limitations of current methods and enable improved applications such as image vectorization, vector-graphics generation from text prompts, single-image reconstruction of shape ambigrams and multi-view 3D reconstruction. 3 authors · Aug 18, 2023