new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 2

RoboNinja: Learning an Adaptive Cutting Policy for Multi-Material Objects

We introduce RoboNinja, a learning-based cutting system for multi-material objects (i.e., soft objects with rigid cores such as avocados or mangos). In contrast to prior works using open-loop cutting actions to cut through single-material objects (e.g., slicing a cucumber), RoboNinja aims to remove the soft part of an object while preserving the rigid core, thereby maximizing the yield. To achieve this, our system closes the perception-action loop by utilizing an interactive state estimator and an adaptive cutting policy. The system first employs sparse collision information to iteratively estimate the position and geometry of an object's core and then generates closed-loop cutting actions based on the estimated state and a tolerance value. The "adaptiveness" of the policy is achieved through the tolerance value, which modulates the policy's conservativeness when encountering collisions, maintaining an adaptive safety distance from the estimated core. Learning such cutting skills directly on a real-world robot is challenging. Yet, existing simulators are limited in simulating multi-material objects or computing the energy consumption during the cutting process. To address this issue, we develop a differentiable cutting simulator that supports multi-material coupling and allows for the generation of optimized trajectories as demonstrations for policy learning. Furthermore, by using a low-cost force sensor to capture collision feedback, we were able to successfully deploy the learned model in real-world scenarios, including objects with diverse core geometries and soft materials.

  • 7 authors
·
Feb 22, 2023

ReLoop2: Building Self-Adaptive Recommendation Models via Responsive Error Compensation Loop

Industrial recommender systems face the challenge of operating in non-stationary environments, where data distribution shifts arise from evolving user behaviors over time. To tackle this challenge, a common approach is to periodically re-train or incrementally update deployed deep models with newly observed data, resulting in a continual training process. However, the conventional learning paradigm of neural networks relies on iterative gradient-based updates with a small learning rate, making it slow for large recommendation models to adapt. In this paper, we introduce ReLoop2, a self-correcting learning loop that facilitates fast model adaptation in online recommender systems through responsive error compensation. Inspired by the slow-fast complementary learning system observed in human brains, we propose an error memory module that directly stores error samples from incoming data streams. These stored samples are subsequently leveraged to compensate for model prediction errors during testing, particularly under distribution shifts. The error memory module is designed with fast access capabilities and undergoes continual refreshing with newly observed data samples during the model serving phase to support fast model adaptation. We evaluate the effectiveness of ReLoop2 on three open benchmark datasets as well as a real-world production dataset. The results demonstrate the potential of ReLoop2 in enhancing the responsiveness and adaptiveness of recommender systems operating in non-stationary environments.

  • 6 authors
·
Jun 14, 2023

ContextNav: Towards Agentic Multimodal In-Context Learning

Recent advances demonstrate that multimodal large language models (MLLMs) exhibit strong multimodal in-context learning (ICL) capabilities, enabling them to adapt to novel vision-language tasks from a few contextual examples. However, existing ICL approaches face challenges in reconciling scalability with robustness across diverse tasks and noisy contextual examples: manually selecting examples produces clean contexts but is labor-intensive and task-specific, while similarity-based retrieval improves scalability but could introduce irrelevant or structurally inconsistent samples that degrade ICL performance. To address these limitations, we propose ContextNav, the first agentic framework that integrates the scalability of automated retrieval with the quality and adaptiveness of human-like curation, enabling noise-robust and dynamically optimized contextualization for multimodal ICL. ContextNav unifies context management and noise-robust contextualization within a closed-loop workflow driven by graph-based orchestration. Specifically, it builds a resource-aware multimodal embedding pipeline, maintains a retrievable vector database, and applies agentic retrieval and structural alignment to construct noise-resilient contexts. An Operational Grammar Graph (OGG) further supports adaptive workflow planning and optimization, enabling the agent to refine its operational strategies based on downstream ICL feedback. Experimental results demonstrate that ContextNav achieves state-of-the-art performance across various datasets, underscoring the promise of agentic workflows for advancing scalable and robust contextualization in multimodal ICL.

  • 6 authors
·
Oct 6, 2025

HyperAgent: Leveraging Hypergraphs for Topology Optimization in Multi-Agent Communication

Recent advances in large language model-powered multi-agent systems have demonstrated remarkable collective intelligence through effective communication. However, existing approaches face two primary challenges: (i) Ineffective group collaboration modeling, as they rely on pairwise edge representations in graph structures, limiting their ability to capture relationships among multiple agents; and (ii) Limited task-adaptiveness in communication topology design, leading to excessive communication cost for simple tasks and insufficient coordination for complex scenarios. These issues restrict the scalability and practical deployment of adaptive collaboration frameworks. To address these challenges, we propose HyperAgent, a hypergraph-based framework that optimizes communication topologies and effectively captures group collaboration patterns using direct hyperedge representations. Unlike edge-based approaches, HyperAgent uses hyperedges to link multiple agents within the same subtask and employs hypergraph convolutional layers to achieve one-step information aggregation in collaboration groups. Additionally, it incorporates a variational autoencoder framework with sparsity regularization to dynamically adjust hypergraph topologies based on task complexity. Experiments highlight the superiority of HyperAgent in both performance and efficiency. For instance, on GSM8K, HyperAgent achieves 95.07\% accuracy while reducing token consumption by 25.33\%, demonstrating the potential of hypergraph-based optimization for multi-agent communication.

  • 8 authors
·
Oct 12, 2025 2