new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 7

Distilling Efficient Language-Specific Models for Cross-Lingual Transfer

Massively multilingual Transformers (MMTs), such as mBERT and XLM-R, are widely used for cross-lingual transfer learning. While these are pretrained to represent hundreds of languages, end users of NLP systems are often interested only in individual languages. For such purposes, the MMTs' language coverage makes them unnecessarily expensive to deploy in terms of model size, inference time, energy, and hardware cost. We thus propose to extract compressed, language-specific models from MMTs which retain the capacity of the original MMTs for cross-lingual transfer. This is achieved by distilling the MMT bilingually, i.e., using data from only the source and target language of interest. Specifically, we use a two-phase distillation approach, termed BiStil: (i) the first phase distils a general bilingual model from the MMT, while (ii) the second, task-specific phase sparsely fine-tunes the bilingual "student" model using a task-tuned variant of the original MMT as its "teacher". We evaluate this distillation technique in zero-shot cross-lingual transfer across a number of standard cross-lingual benchmarks. The key results indicate that the distilled models exhibit minimal degradation in target language performance relative to the base MMT despite being significantly smaller and faster. Furthermore, we find that they outperform multilingually distilled models such as DistilmBERT and MiniLMv2 while having a very modest training budget in comparison, even on a per-language basis. We also show that bilingual models distilled from MMTs greatly outperform bilingual models trained from scratch. Our code and models are available at https://github.com/AlanAnsell/bistil.

  • 4 authors
·
Jun 2, 2023

CLIPTrans: Transferring Visual Knowledge with Pre-trained Models for Multimodal Machine Translation

There has been a growing interest in developing multimodal machine translation (MMT) systems that enhance neural machine translation (NMT) with visual knowledge. This problem setup involves using images as auxiliary information during training, and more recently, eliminating their use during inference. Towards this end, previous works face a challenge in training powerful MMT models from scratch due to the scarcity of annotated multilingual vision-language data, especially for low-resource languages. Simultaneously, there has been an influx of multilingual pre-trained models for NMT and multimodal pre-trained models for vision-language tasks, primarily in English, which have shown exceptional generalisation ability. However, these are not directly applicable to MMT since they do not provide aligned multimodal multilingual features for generative tasks. To alleviate this issue, instead of designing complex modules for MMT, we propose CLIPTrans, which simply adapts the independently pre-trained multimodal M-CLIP and the multilingual mBART. In order to align their embedding spaces, mBART is conditioned on the M-CLIP features by a prefix sequence generated through a lightweight mapping network. We train this in a two-stage pipeline which warms up the model with image captioning before the actual translation task. Through experiments, we demonstrate the merits of this framework and consequently push forward the state-of-the-art across standard benchmarks by an average of +2.67 BLEU. The code can be found at www.github.com/devaansh100/CLIPTrans.

  • 6 authors
·
Aug 29, 2023

Multi-criteria Token Fusion with One-step-ahead Attention for Efficient Vision Transformers

Vision Transformer (ViT) has emerged as a prominent backbone for computer vision. For more efficient ViTs, recent works lessen the quadratic cost of the self-attention layer by pruning or fusing the redundant tokens. However, these works faced the speed-accuracy trade-off caused by the loss of information. Here, we argue that token fusion needs to consider diverse relations between tokens to minimize information loss. In this paper, we propose a Multi-criteria Token Fusion (MCTF), that gradually fuses the tokens based on multi-criteria (e.g., similarity, informativeness, and size of fused tokens). Further, we utilize the one-step-ahead attention, which is the improved approach to capture the informativeness of the tokens. By training the model equipped with MCTF using a token reduction consistency, we achieve the best speed-accuracy trade-off in the image classification (ImageNet1K). Experimental results prove that MCTF consistently surpasses the previous reduction methods with and without training. Specifically, DeiT-T and DeiT-S with MCTF reduce FLOPs by about 44% while improving the performance (+0.5%, and +0.3%) over the base model, respectively. We also demonstrate the applicability of MCTF in various Vision Transformers (e.g., T2T-ViT, LV-ViT), achieving at least 31% speedup without performance degradation. Code is available at https://github.com/mlvlab/MCTF.

  • 3 authors
·
Mar 15, 2024

Towards Making the Most of Multilingual Pretraining for Zero-Shot Neural Machine Translation

This paper demonstrates that multilingual pretraining and multilingual fine-tuning are both critical for facilitating cross-lingual transfer in zero-shot translation, where the neural machine translation (NMT) model is tested on source languages unseen during supervised training. Following this idea, we present SixT+, a strong many-to-English NMT model that supports 100 source languages but is trained with a parallel dataset in only six source languages. SixT+ initializes the decoder embedding and the full encoder with XLM-R large and then trains the encoder and decoder layers with a simple two-stage training strategy. SixT+ achieves impressive performance on many-to-English translation. It significantly outperforms CRISS and m2m-100, two strong multilingual NMT systems, with an average gain of 7.2 and 5.0 BLEU respectively. Additionally, SixT+ offers a set of model parameters that can be further fine-tuned to other unsupervised tasks. We demonstrate that adding SixT+ initialization outperforms state-of-the-art explicitly designed unsupervised NMT models on Si<->En and Ne<->En by over 1.2 average BLEU. When applied to zero-shot cross-lingual abstractive summarization, it produces an average performance gain of 12.3 ROUGE-L over mBART-ft. We conduct detailed analyses to understand the key ingredients of SixT+, including multilinguality of the auxiliary parallel data, positional disentangled encoder, and the cross-lingual transferability of its encoder.

  • 7 authors
·
Oct 16, 2021

MMMT-IF: A Challenging Multimodal Multi-Turn Instruction Following Benchmark

Evaluating instruction following capabilities for multimodal, multi-turn dialogue is challenging. With potentially multiple instructions in the input model context, the task is time-consuming for human raters and we show LLM based judges are biased towards answers from the same model. We propose MMMT-IF, an image based multi-turn Q&A evaluation set with added global instructions between questions, constraining the answer format. This challenges models to retrieve instructions dispersed across long dialogues and reason under instruction constraints. All instructions are objectively verifiable through code execution. We introduce the Programmatic Instruction Following (PIF) metric to measure the fraction of the instructions that are correctly followed while performing a reasoning task. The PIF-N-K set of metrics further evaluates robustness by measuring the fraction of samples in a corpus where, for each sample, at least K out of N generated model responses achieve a PIF score of one. The PIF metric aligns with human instruction following ratings, showing 60 percent correlation. Experiments show Gemini 1.5 Pro, GPT-4o, and Claude 3.5 Sonnet, have a PIF metric that drops from 0.81 on average at turn 1 across the models, to 0.64 at turn 20. Across all turns, when each response is repeated 4 times (PIF-4-4), GPT-4o and Gemini successfully follow all instructions only 11% of the time. When all the instructions are also appended to the end of the model input context, the PIF metric improves by 22.3 points on average, showing that the challenge with the task lies not only in following the instructions, but also in retrieving the instructions spread out in the model context. We plan to open source the MMMT-IF dataset and metric computation code.

  • 5 authors
·
Sep 26, 2024

Effective Training Data Synthesis for Improving MLLM Chart Understanding

Being able to effectively read scientific plots, or chart understanding, is a central part toward building effective agents for science. However, existing multimodal large language models (MLLMs), especially open-source ones, are still falling behind with a typical success rate of 30%-50% on challenging benchmarks. Previous studies on fine-tuning MLLMs with synthetic charts are often restricted by their inadequate similarity to the real charts, which could compromise model training and performance on complex real-world charts. In this study, we show that modularizing chart generation and diversifying visual details improves chart understanding capabilities. In particular, we design a five-step data synthesis pipeline, where we separate data and function creation for single plot generation, condition the generation of later subplots on earlier ones for multi-subplot figures, visually diversify the generated figures, filter out low quality data, and finally generate the question-answer (QA) pairs with GPT-4o. This approach allows us to streamline the generation of fine-tuning datasets and introduce the effective chart dataset (ECD), which contains 10k+ chart images and 300k+ QA pairs, covering 25 topics and featuring 250+ chart type combinations with high visual complexity. We show that ECD consistently improves the performance of various MLLMs on a range of real-world and synthetic test sets. Code, data and models are available at: https://github.com/yuweiyang-anu/ECD.

  • 8 authors
·
Aug 8, 2025

Google's Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation

We propose a simple solution to use a single Neural Machine Translation (NMT) model to translate between multiple languages. Our solution requires no change in the model architecture from our base system but instead introduces an artificial token at the beginning of the input sentence to specify the required target language. The rest of the model, which includes encoder, decoder and attention, remains unchanged and is shared across all languages. Using a shared wordpiece vocabulary, our approach enables Multilingual NMT using a single model without any increase in parameters, which is significantly simpler than previous proposals for Multilingual NMT. Our method often improves the translation quality of all involved language pairs, even while keeping the total number of model parameters constant. On the WMT'14 benchmarks, a single multilingual model achieves comparable performance for EnglishrightarrowFrench and surpasses state-of-the-art results for EnglishrightarrowGerman. Similarly, a single multilingual model surpasses state-of-the-art results for FrenchrightarrowEnglish and GermanrightarrowEnglish on WMT'14 and WMT'15 benchmarks respectively. On production corpora, multilingual models of up to twelve language pairs allow for better translation of many individual pairs. In addition to improving the translation quality of language pairs that the model was trained with, our models can also learn to perform implicit bridging between language pairs never seen explicitly during training, showing that transfer learning and zero-shot translation is possible for neural translation. Finally, we show analyses that hints at a universal interlingua representation in our models and show some interesting examples when mixing languages.

  • 12 authors
·
Nov 14, 2016

Synergistic Learning with Multi-Task DeepONet for Efficient PDE Problem Solving

Multi-task learning (MTL) is an inductive transfer mechanism designed to leverage useful information from multiple tasks to improve generalization performance compared to single-task learning. It has been extensively explored in traditional machine learning to address issues such as data sparsity and overfitting in neural networks. In this work, we apply MTL to problems in science and engineering governed by partial differential equations (PDEs). However, implementing MTL in this context is complex, as it requires task-specific modifications to accommodate various scenarios representing different physical processes. To this end, we present a multi-task deep operator network (MT-DeepONet) to learn solutions across various functional forms of source terms in a PDE and multiple geometries in a single concurrent training session. We introduce modifications in the branch network of the vanilla DeepONet to account for various functional forms of a parameterized coefficient in a PDE. Additionally, we handle parameterized geometries by introducing a binary mask in the branch network and incorporating it into the loss term to improve convergence and generalization to new geometry tasks. Our approach is demonstrated on three benchmark problems: (1) learning different functional forms of the source term in the Fisher equation; (2) learning multiple geometries in a 2D Darcy Flow problem and showcasing better transfer learning capabilities to new geometries; and (3) learning 3D parameterized geometries for a heat transfer problem and demonstrate the ability to predict on new but similar geometries. Our MT-DeepONet framework offers a novel approach to solving PDE problems in engineering and science under a unified umbrella based on synergistic learning that reduces the overall training cost for neural operators.

  • 5 authors
·
Aug 4, 2024

HY-MT1.5 Technical Report

In this report, we introduce our latest translation models, HY-MT1.5-1.8B and HY-MT1.5-7B, a new family of machine translation models developed through a holistic training framework tailored for high-performance translation. Our methodology orchestrates a multi-stage pipeline that integrates general and MT-oriented pre-training, supervised fine-tuning, on-policy distillation, and reinforcement learning. HY-MT1.5-1.8B, the 1.8B-parameter model demonstrates remarkable parameter efficiency, comprehensively outperforming significantly larger open-source baselines (e.g., Tower-Plus-72B, Qwen3-32B) and mainstream commercial APIs (e.g., Microsoft Translator, Doubao Translator) in standard Chinese-foreign and English-foreign tasks. It achieves approximately 90% of the performance of ultra-large proprietary models such as Gemini-3.0-Pro, while marginally trailing Gemini-3.0-Pro on WMT25 and Mandarin-minority language benchmarks, it maintains a substantial lead over other competing models. Furthermore, HY-MT1.5-7B establishes a new state-of-the-art for its size class, achieving 95% of Gemini-3.0-Pro's performance on Flores-200 and surpassing it on the challenging WMT25 and Mandarin-minority language test sets. Beyond standard translation, the HY-MT1.5 series supports advanced constraints, including terminology intervention, context-aware translation, and format preservation. Extensive empirical evaluations confirm that both models offer highly competitive, robust solutions for general and specialized translation tasks within their respective parameter scales.

  • 5 authors
·
Dec 30, 2025

MINT: Multi-modal Chain of Thought in Unified Generative Models for Enhanced Image Generation

Unified generative models have demonstrated extraordinary performance in both text and image generation. However, they tend to underperform when generating intricate images with various interwoven conditions, which is hard to solely rely on straightforward text-to-image generation. In response to this challenge, we introduce MINT, an innovative unified generative model, empowered with native multimodal chain of thought (MCoT) for enhanced image generation for the first time. Firstly, we design Mixture of Transformer Experts (MTXpert), an expert-parallel structure that effectively supports both natural language generation (NLG) and visual capabilities, while avoiding potential modality conflicts that could hinder the full potential of each modality. Building on this, we propose an innovative MCoT training paradigm, a step-by-step approach to multimodal thinking, reasoning, and reflection specifically designed to enhance image generation. This paradigm equips MINT with nuanced, element-wise decoupled alignment and a comprehensive understanding of textual and visual components. Furthermore, it fosters advanced multimodal reasoning and self-reflection, enabling the construction of images that are firmly grounded in the logical relationships between these elements. Notably, MINT has been validated to exhibit superior performance across multiple benchmarks for text-to-image (T2I) and image-to-text (I2T) tasks.

  • 15 authors
·
Mar 3, 2025

Investigating Transfer Learning in Multilingual Pre-trained Language Models through Chinese Natural Language Inference

Multilingual transformers (XLM, mT5) have been shown to have remarkable transfer skills in zero-shot settings. Most transfer studies, however, rely on automatically translated resources (XNLI, XQuAD), making it hard to discern the particular linguistic knowledge that is being transferred, and the role of expert annotated monolingual datasets when developing task-specific models. We investigate the cross-lingual transfer abilities of XLM-R for Chinese and English natural language inference (NLI), with a focus on the recent large-scale Chinese dataset OCNLI. To better understand linguistic transfer, we created 4 categories of challenge and adversarial tasks (totaling 17 new datasets) for Chinese that build on several well-known resources for English (e.g., HANS, NLI stress-tests). We find that cross-lingual models trained on English NLI do transfer well across our Chinese tasks (e.g., in 3/4 of our challenge categories, they perform as well/better than the best monolingual models, even on 3/5 uniquely Chinese linguistic phenomena such as idioms, pro drop). These results, however, come with important caveats: cross-lingual models often perform best when trained on a mixture of English and high-quality monolingual NLI data (OCNLI), and are often hindered by automatically translated resources (XNLI-zh). For many phenomena, all models continue to struggle, highlighting the need for our new diagnostics to help benchmark Chinese and cross-lingual models. All new datasets/code are released at https://github.com/huhailinguist/ChineseNLIProbing.

  • 8 authors
·
Jun 7, 2021

Distill Visual Chart Reasoning Ability from LLMs to MLLMs

Solving complex chart Q&A tasks requires advanced visual reasoning abilities in multimodal large language models (MLLMs). Recent studies highlight that these abilities consist of two main parts: recognizing key information from visual inputs and conducting reasoning over it. Thus, a promising approach to enhance MLLMs is to construct relevant training data focusing on the two aspects. However, collecting and annotating complex charts and questions is costly and time-consuming, and ensuring the quality of annotated answers remains a challenge. In this paper, we propose Code-as-Intermediary Translation (CIT), a cost-effective, efficient and easily scalable data synthesis method for distilling visual reasoning abilities from LLMs to MLLMs. The code serves as an intermediary that translates visual chart representations into textual representations, enabling LLMs to understand cross-modal information. Specifically, we employ text-based synthesizing techniques to construct chart-plotting code and produce ReachQA, a dataset containing 3k reasoning-intensive charts and 20k Q&A pairs to enhance both recognition and reasoning abilities. Experiments show that when fine-tuned with our data, models not only perform well on chart-related benchmarks, but also demonstrate improved multimodal reasoning abilities on general mathematical benchmarks like MathVista. The code and dataset are publicly available at https://github.com/hewei2001/ReachQA.

  • 9 authors
·
Oct 24, 2024 5

MedS^3: Towards Medical Small Language Models with Self-Evolved Slow Thinking

Medical language models (MLMs) have become pivotal in advancing medical natural language processing. However, prior models that rely on pre-training or supervised fine-tuning often exhibit low data efficiency and limited practicality in real-world clinical applications. While OpenAIs O1 highlights test-time scaling in mathematics, attempts to replicate this approach in medicine typically distill responses from GPT-series models to open-source models, focusing primarily on multiple-choice tasks. This strategy, though straightforward, neglects critical concerns like data privacy and realistic deployment in clinical settings. In this work, we present a deployable, small-scale medical language model, \mone, designed for long-chain reasoning in clinical tasks using a self-evolution paradigm. Starting with a seed dataset of around 8,000 instances spanning five domains and 16 datasets, we prompt a base policy model to perform Monte Carlo Tree Search (MCTS) to construct verifiable reasoning chains. Each reasoning step is assigned an evolution rollout value, allowing verified trajectories to train the policy model and the reward model. During inference, the policy model generates multiple responses, and the reward model selects the one with the highest reward score. Experiments on eleven evaluation datasets demonstrate that \mone outperforms prior open-source models by 2 points, with the addition of the reward model further boosting performance (sim13 points), surpassing GPT-4o-mini. Code and data are available at https://github.com/pixas/MedSSS.

  • 6 authors
·
Jan 21, 2025

End-to-End Referring Video Object Segmentation with Multimodal Transformers

The referring video object segmentation task (RVOS) involves segmentation of a text-referred object instance in the frames of a given video. Due to the complex nature of this multimodal task, which combines text reasoning, video understanding, instance segmentation and tracking, existing approaches typically rely on sophisticated pipelines in order to tackle it. In this paper, we propose a simple Transformer-based approach to RVOS. Our framework, termed Multimodal Tracking Transformer (MTTR), models the RVOS task as a sequence prediction problem. Following recent advancements in computer vision and natural language processing, MTTR is based on the realization that video and text can be processed together effectively and elegantly by a single multimodal Transformer model. MTTR is end-to-end trainable, free of text-related inductive bias components and requires no additional mask-refinement post-processing steps. As such, it simplifies the RVOS pipeline considerably compared to existing methods. Evaluation on standard benchmarks reveals that MTTR significantly outperforms previous art across multiple metrics. In particular, MTTR shows impressive +5.7 and +5.0 mAP gains on the A2D-Sentences and JHMDB-Sentences datasets respectively, while processing 76 frames per second. In addition, we report strong results on the public validation set of Refer-YouTube-VOS, a more challenging RVOS dataset that has yet to receive the attention of researchers. The code to reproduce our experiments is available at https://github.com/mttr2021/MTTR

  • 3 authors
·
Nov 29, 2021

URSA: Understanding and Verifying Chain-of-thought Reasoning in Multimodal Mathematics

Chain-of-thought (CoT) reasoning has been widely applied in the mathematical reasoning of Large Language Models (LLMs). Recently, the introduction of derivative process supervision on CoT trajectories has sparked discussions on enhancing scaling capabilities during test time, thereby boosting the potential of these models. However, in multimodal mathematical reasoning, the scarcity of high-quality CoT training data has hindered existing models from achieving high-precision CoT reasoning and has limited the realization of reasoning potential during test time. In this work, we propose a three-module synthesis strategy that integrates CoT distillation, trajectory-format rewriting, and format unification. It results in a high-quality CoT reasoning instruction fine-tuning dataset in multimodal mathematics, MMathCoT-1M. We comprehensively validate the state-of-the-art (SOTA) performance of the trained URSA-7B model on multiple multimodal mathematical benchmarks. For test-time scaling, we introduce a data synthesis strategy that automatically generates process annotation datasets, known as DualMath-1.1M, focusing on both interpretation and logic. By further training URSA-7B on DualMath-1.1M, we transition from CoT reasoning capabilities to robust supervision abilities. The trained URSA-RM-7B acts as a verifier, effectively enhancing the performance of URSA-7B at test time. URSA-RM-7B also demonstrates excellent out-of-distribution (OOD) verifying capabilities, showcasing its generalization. Model weights, training data and code will be open-sourced.

  • 8 authors
·
Jan 8, 2025 3

Improving Autonomous AI Agents with Reflective Tree Search and Self-Learning

Autonomous agents have demonstrated significant potential in automating complex multistep decision-making tasks. However, even state-of-the-art vision-language models (VLMs), such as GPT-4o, still fall short of human-level performance, particularly in intricate web environments and long-horizon planning tasks. To address these limitations, we introduce Reflective Monte Carlo Tree Search (R-MCTS), a novel test-time algorithm designed to enhance the ability of AI agents, e.g., powered by GPT-4o, to explore decision space on the fly. R-MCTS extends traditional MCTS by 1) incorporating contrastive reflection, allowing agents to learn from past interactions and dynamically improve their search efficiency; and 2) using multi-agent debate to provide reliable state evaluation. Moreover, we improve the agent's performance by fine-tuning GPT-4o through self-learning, using R-MCTS generated tree traversals without any human-provided labels. On the challenging VisualWebArena benchmark, our GPT-4o-based R-MCTS agent achieves a 6% to 30% relative improvement across various tasks compared to the previous state-of-the-art. Additionally, we show that the knowledge gained from test-time search can be effectively transferred back to GPT-4o via fine-tuning. The fine-tuned GPT-4o matches 97% of R-MCTS's performance while reducing compute usage by a factor of four at test time. Furthermore, qualitative results reveal that the fine-tuned GPT-4o model demonstrates the ability to explore the environment, evaluate a state, and backtrack to viable ones when it detects that the current state cannot lead to success. Moreover, our work demonstrates the compute scaling properties in both training - data collection with R-MCTS - and testing time. These results suggest a promising research direction to enhance VLMs' reasoning and planning capabilities for agentic applications via test-time search and self-learning.

  • 7 authors
·
Oct 2, 2024 2

DRT-o1: Optimized Deep Reasoning Translation via Long Chain-of-Thought

Recently, O1-like models have emerged as representative examples, illustrating the effectiveness of long chain-of-thought (CoT) in reasoning tasks such as math and coding tasks. In this paper, we introduce DRT-o1, an attempt to bring the success of long CoT to neural machine translation (MT). Specifically, in view of the literature books that might involve similes and metaphors, translating these texts to a target language is very difficult in practice due to cultural differences. In such cases, literal translation often fails to convey the intended meaning effectively. Even for professional human translators, considerable thought must be given to preserving semantics throughout the translation process. To simulate LLMs' long thought ability in MT, we first mine sentences containing similes or metaphors from existing literature books, and then develop a multi-agent framework to translate these sentences via long thought. In the multi-agent framework, a translator is used to iteratively translate the source sentence under the suggestions provided by an advisor. To ensure the effectiveness of the long thoughts, an evaluator is also employed to judge whether the translation in the current round is better than the previous one or not. In this manner, we collect tens of thousands of long-thought MT data, which is used to train our DRT-o1. The experimental results on literature translation demonstrate the effectiveness of the DRT-o1. Using Qwen2.5-7B and Qwen2.5-14B as the backbones, the improvement brought by DRT-o1 achieves 7.33~8.26 BLEU and 1.66~3.36 CometScore. Besides, DRT-o1-7B can outperform QwQ-32B-Preview by 7.82 BLEU and 1.46 CometScore, showing its effectiveness. The project is available at https://github.com/krystalan/DRT-o1

  • 4 authors
·
Dec 23, 2024 4

MCTSr-Zero: Self-Reflective Psychological Counseling Dialogues Generation via Principles and Adaptive Exploration

The integration of Monte Carlo Tree Search (MCTS) with Large Language Models (LLMs) has demonstrated significant success in structured, problem-oriented tasks. However, applying these methods to open-ended dialogues, such as those in psychological counseling, presents unique challenges. Unlike tasks with objective correctness, success in therapeutic conversations depends on subjective factors like empathetic engagement, ethical adherence, and alignment with human preferences, for which strict "correctness" criteria are ill-defined. Existing result-oriented MCTS approaches can therefore produce misaligned responses. To address this, we introduce MCTSr-Zero, an MCTS framework designed for open-ended, human-centric dialogues. Its core innovation is "domain alignment", which shifts the MCTS search objective from predefined end-states towards conversational trajectories that conform to target domain principles (e.g., empathy in counseling). Furthermore, MCTSr-Zero incorporates "Regeneration" and "Meta-Prompt Adaptation" mechanisms to substantially broaden exploration by allowing the MCTS to consider fundamentally different initial dialogue strategies. We evaluate MCTSr-Zero in psychological counseling by generating multi-turn dialogue data, which is used to fine-tune an LLM, PsyLLM. We also introduce PsyEval, a benchmark for assessing multi-turn psychological counseling dialogues. Experiments demonstrate that PsyLLM achieves state-of-the-art performance on PsyEval and other relevant metrics, validating MCTSr-Zero's effectiveness in generating high-quality, principle-aligned conversational data for human-centric domains and addressing the LLM challenge of consistently adhering to complex psychological standards.

JianChengXingYun JianChengXingYun
·
May 29, 2025

Building Math Agents with Multi-Turn Iterative Preference Learning

Recent studies have shown that large language models' (LLMs) mathematical problem-solving capabilities can be enhanced by integrating external tools, such as code interpreters, and employing multi-turn Chain-of-Thought (CoT) reasoning. While current methods focus on synthetic data generation and Supervised Fine-Tuning (SFT), this paper studies the complementary direct preference learning approach to further improve model performance. However, existing direct preference learning algorithms are originally designed for the single-turn chat task, and do not fully address the complexities of multi-turn reasoning and external tool integration required for tool-integrated mathematical reasoning tasks. To fill in this gap, we introduce a multi-turn direct preference learning framework, tailored for this context, that leverages feedback from code interpreters and optimizes trajectory-level preferences. This framework includes multi-turn DPO and multi-turn KTO as specific implementations. The effectiveness of our framework is validated through training of various language models using an augmented prompt set from the GSM8K and MATH datasets. Our results demonstrate substantial improvements: a supervised fine-tuned Gemma-1.1-it-7B model's performance increased from 77.5% to 83.9% on GSM8K and from 46.1% to 51.2% on MATH. Similarly, a Gemma-2-it-9B model improved from 84.1% to 86.3% on GSM8K and from 51.0% to 54.5% on MATH.

  • 13 authors
·
Sep 3, 2024 2

R1-T1: Fully Incentivizing Translation Capability in LLMs via Reasoning Learning

Despite recent breakthroughs in reasoning-enhanced large language models (LLMs) like DeepSeek-R1, incorporating inference-time reasoning into machine translation (MT), where human translators naturally employ structured, multi-layered reasoning chain-of-thoughts (CoTs), is yet underexplored. Existing methods either design a fixed CoT tailored for a specific MT sub-task (e.g., literature translation), or rely on synthesizing CoTs unaligned with humans and supervised fine-tuning (SFT) prone to catastrophic forgetting, limiting their adaptability to diverse translation scenarios. This paper introduces R1-Translator (R1-T1), a novel framework to achieve inference-time reasoning for general MT via reinforcement learning (RL) with human-aligned CoTs comprising six common patterns. Our approach pioneers three innovations: (1) extending reasoning-based translation beyond MT sub-tasks to six languages and diverse tasks (e.g., legal/medical domain adaptation, idiom resolution); (2) formalizing six expert-curated CoT templates that mirror hybrid human strategies like context-aware paraphrasing and back translation; and (3) enabling self-evolving CoT discovery and anti-forgetting adaptation through RL with KL-constrained rewards. Experimental results indicate a steady translation performance improvement in 21 languages and 80 translation directions on Flores-101 test set, especially on the 15 languages unseen from training, with its general multilingual abilities preserved compared with plain SFT.

  • 13 authors
·
Feb 26, 2025 2

FREESON: Retriever-Free Retrieval-Augmented Reasoning via Corpus-Traversing MCTS

Large Reasoning Models (LRMs) have demonstrated remarkable capabilities in multi-step reasoning and calling search engines at appropriate steps. However, existing retrieval-augmented reasoning approaches rely on separate retrieval models, limiting the LRM's role in retrieval to deciding when to retrieve and how to query. This separation not only increases hardware and operational costs but also leads to errors in the retrieval process due to the representation bottleneck, a phenomenon where the retriever's embedding space is not expressive enough to meet the generator's requirements. To address this, we shift our perspective from sequence-to-sequence matching to locating the answer-containing paths within the corpus, and propose a novel framework called FREESON (Retriever-FREE Retrieval-Augmented ReaSONing). This framework enables LRMs to retrieve relevant knowledge on their own by acting as both a generator and retriever. To achieve this, we introduce a variant of the MCTS algorithm specialized for the retrieval task, which we call CT-MCTS (Corpus-Traversing Monte Carlo Tree Search). In this algorithm, LRMs traverse through the corpus toward answer-containing regions. Our results on five open-domain QA benchmarks, including single-hop and multi-hop questions, show that FREESON achieves an average improvement of 14.4% in EM and F1 over four multi-step reasoning models with a separate retriever, and it also performs comparably to the strongest baseline, surpassing it by 3% on PopQA and 2WikiMultihopQA.

  • 2 authors
·
May 22, 2025 2

Next Generation Multitarget Trackers: Random Finite Set Methods vs Transformer-based Deep Learning

Multitarget Tracking (MTT) is the problem of tracking the states of an unknown number of objects using noisy measurements, with important applications to autonomous driving, surveillance, robotics, and others. In the model-based Bayesian setting, there are conjugate priors that enable us to express the multi-object posterior in closed form, which could theoretically provide Bayes-optimal estimates. However, the posterior involves a super-exponential growth of the number of hypotheses over time, forcing state-of-the-art methods to resort to approximations for remaining tractable, which can impact their performance in complex scenarios. Model-free methods based on deep-learning provide an attractive alternative, as they can, in principle, learn the optimal filter from data, but to the best of our knowledge were never compared to current state-of-the-art Bayesian filters, specially not in contexts where accurate models are available. In this paper, we propose a high-performing deep-learning method for MTT based on the Transformer architecture and compare it to two state-of-the-art Bayesian filters, in a setting where we assume the correct model is provided. Although this gives an edge to the model-based filters, it also allows us to generate unlimited training data. We show that the proposed model outperforms state-of-the-art Bayesian filters in complex scenarios, while matching their performance in simpler cases, which validates the applicability of deep-learning also in the model-based regime. The code for all our implementations is made available at https://github.com/JulianoLagana/MT3 .

  • 6 authors
·
Apr 1, 2021

Teaching a Language Model to Speak the Language of Tools

External tool integration through function-calling is essential for practical language model applications, yet most multilingual models lack reliable tool-use capabilities in non-English languages. Even state-of-the-art multilingual models struggle with determining when to use tools and generating the structured outputs required for function calls, often exhibiting language confusion when prompted in lower-resource languages. This work presents a methodology for adapting existing language models to enable robust tool use in any target language, using Bulgarian as a case study. The approach involves continued training of the BgGPT model series (2.6B, 9B, 27B parameters) on a novel bilingual dataset of 10,035 function-calling examples designed to support standardized protocols like MCP (Model Context Protocol). The research introduces TUCAN (Tool-Using Capable Assistant Navigator), which achieves up to 28.75% improvement in function-calling accuracy over base models while preserving core language understanding, as verified on established Bulgarian benchmarks. Beyond accuracy gains, TUCAN models demonstrate production-ready response formatting with clean, parsable function calls, contrasting with the verbose and inconsistent outputs of base models. The models, evaluation framework, and dataset are released to enable replication for other languages. This work demonstrates a practical approach for extending tool-augmented capabilities beyond English-centric systems.

  • 1 authors
·
Jun 29, 2025 1

Progressive Multimodal Reasoning via Active Retrieval

Multi-step multimodal reasoning tasks pose significant challenges for multimodal large language models (MLLMs), and finding effective ways to enhance their performance in such scenarios remains an unresolved issue. In this paper, we propose AR-MCTS, a universal framework designed to progressively improve the reasoning capabilities of MLLMs through Active Retrieval (AR) and Monte Carlo Tree Search (MCTS). Our approach begins with the development of a unified retrieval module that retrieves key supporting insights for solving complex reasoning problems from a hybrid-modal retrieval corpus. To bridge the gap in automated multimodal reasoning verification, we employ the MCTS algorithm combined with an active retrieval mechanism, which enables the automatic generation of step-wise annotations. This strategy dynamically retrieves key insights for each reasoning step, moving beyond traditional beam search sampling to improve the diversity and reliability of the reasoning space. Additionally, we introduce a process reward model that aligns progressively to support the automatic verification of multimodal reasoning tasks. Experimental results across three complex multimodal reasoning benchmarks confirm the effectiveness of the AR-MCTS framework in enhancing the performance of various multimodal models. Further analysis demonstrates that AR-MCTS can optimize sampling diversity and accuracy, yielding reliable multimodal reasoning.

  • 6 authors
·
Dec 19, 2024 2

Multilingual Translation with Extensible Multilingual Pretraining and Finetuning

Recent work demonstrates the potential of multilingual pretraining of creating one model that can be used for various tasks in different languages. Previous work in multilingual pretraining has demonstrated that machine translation systems can be created by finetuning on bitext. In this work, we show that multilingual translation models can be created through multilingual finetuning. Instead of finetuning on one direction, a pretrained model is finetuned on many directions at the same time. Compared to multilingual models trained from scratch, starting from pretrained models incorporates the benefits of large quantities of unlabeled monolingual data, which is particularly important for low resource languages where bitext is not available. We demonstrate that pretrained models can be extended to incorporate additional languages without loss of performance. We double the number of languages in mBART to support multilingual machine translation models of 50 languages. Finally, we create the ML50 benchmark, covering low, mid, and high resource languages, to facilitate reproducible research by standardizing training and evaluation data. On ML50, we demonstrate that multilingual finetuning improves on average 1 BLEU over the strongest baselines (being either multilingual from scratch or bilingual finetuning) while improving 9.3 BLEU on average over bilingual baselines from scratch.

  • 8 authors
·
Aug 2, 2020

ChartM^3: Benchmarking Chart Editing with Multimodal Instructions

Charts are a fundamental visualization format widely used in data analysis across research and industry. While enabling users to edit charts based on high-level intentions is of great practical value, existing methods primarily rely on natural language instructions, which are often too ambiguous to support fine-grained editing. In this work, we introduce a novel paradigm for multimodal chart editing, where user intent is expressed through a combination of natural language and visual indicators that explicitly highlight the elements to be modified. To support this paradigm, we present ChartM^3, a new benchmark for Multimodal chart editing with Multi-level complexity and Multi-perspective evaluation. ChartM^3 contains 1,000 samples spanning four levels of editing difficulty. Each sample includes triplets in the form of (chart, code, multimodal instructions). To comprehensively evaluate chart editing models, ChartM^3 provides metrics that assess both visual appearance and code correctness. Our benchmark reveals significant limitations in current multimodal large language models (MLLMs), including GPT-4o, particularly in their ability to interpret and act on visual indicators. To address this, we construct ChartM^3-Train, a large-scale training set with 24,000 multimodal chart editing samples. Fine-tuning MLLMs on this dataset leads to substantial improvements, demonstrating the importance of multimodal supervision in building practical chart editing systems. Our datasets, codes, and evaluation tools are available at https://github.com/MLrollIT/ChartM3. %https://github.com/MLrollIT/ChartM3Our datasets, codes, and evaluation tools are available at https://github.com/yaolinli/VCE.

  • 7 authors
·
Jul 25, 2025

Towards Zero-Shot Multimodal Machine Translation

Current multimodal machine translation (MMT) systems rely on fully supervised data (i.e models are trained on sentences with their translations and accompanying images). However, this type of data is costly to collect, limiting the extension of MMT to other language pairs for which such data does not exist. In this work, we propose a method to bypass the need for fully supervised data to train MMT systems, using multimodal English data only. Our method, called ZeroMMT, consists in adapting a strong text-only machine translation (MT) model by training it on a mixture of two objectives: visually conditioned masked language modelling and the Kullback-Leibler divergence between the original and new MMT outputs. We evaluate on standard MMT benchmarks and the recently released CoMMuTE, a contrastive benchmark aiming to evaluate how well models use images to disambiguate English sentences. We obtain disambiguation performance close to state-of-the-art MMT models trained additionally on fully supervised examples. To prove that our method generalizes to languages with no fully supervised training data available, we extend the CoMMuTE evaluation dataset to three new languages: Arabic, Russian and Chinese. We further show that we can control the trade-off between disambiguation capabilities and translation fidelity at inference time using classifier-free guidance and without any additional data. Our code, data and trained models are publicly accessible.

  • 4 authors
·
Jul 18, 2024

Visual Document Understanding and Question Answering: A Multi-Agent Collaboration Framework with Test-Time Scaling

Existing vision-language models (VLMs), whether generalists or specialists, remain constrained by their parameter scale, lack robust self-correction capabilities, and underperform in tasks involving long visual contexts and complex reasoning, resulting in suboptimal performance on document-based tasks. To address this, we propose MACT, a Multi-Agent Collaboration framework with Test-Time scaling, tailored for visual document understanding and visual question answering (VQA). It comprises four distinct small-scale agents, i.e., planning, execution, judgment, and answer agents, with clearly defined roles and effective collaboration. Notably, the judgment agent exclusively verifies correctness and redirects to prior agents for revisions, outperforming conventional correction strategies. To further expand the capability boundaries of the framework, we propose mixed reward modeling that balances agent-specific abilities and global collaboration, as well as agent-wise hybrid test-time scaling, which customizes different scaling strategies for each agent based on their functions. Evaluated on benchmarks spanning both document-based and non-document-based settings, our MACT shows superior performance with a smaller parameter scale without sacrificing the ability of general and mathematical tasks. Especially, it stands out in benchmarks involving long visual contexts and complicated reasoning. The three variants of MACT consistently hold the top three positions in average scores, leading in 13 of the 15 benchmarks. Code will be available at: https://github.com/YU-deep/MACT.git.

  • 9 authors
·
Aug 5, 2025 2

MT-Ladder: A Model-Agnostic Framework Boosting LLM-based Machine Translation to the Next Level

General-purpose Large Language Models (LLMs) like GPT-4 have achieved remarkable advancements in machine translation (MT) by leveraging extensive web content. On the other hand, translation-specific LLMs are built by pre-training on domain-specific monolingual corpora and fine-tuning with human-annotated translation data. Despite the superior performance, these methods either demand an unprecedented scale of computing and data or substantial human editing and annotation efforts. In this paper, we develop MT-Ladder, a novel model-agnostic and cost-effective tool to refine the performance of general LLMs for MT. MT-Ladder is trained on pseudo-refinement triplets which can be easily obtained from existing LLMs without additional human cost. During training, we propose a hierarchical fine-tuning strategy with an easy-to-hard schema, improving MT-Ladder's refining performance progressively. The trained MT-Ladder can be seamlessly integrated with any general-purpose LLMs to boost their translation performance. By utilizing Gemma-2B/7B as the backbone, MT-Ladder-2B can elevate raw translations to the level of top-tier open-source models (e.g., refining BigTranslate-13B with +6.91 BLEU and +3.52 COMET for XX-En), and MT-Ladder-7B can further enhance model performance to be on par with the state-of-the-art GPT-4. Extensive ablation and analysis corroborate the effectiveness of MT-Ladder in diverse settings. Our code is available at https://github.com/fzp0424/Ladder

  • 5 authors
·
Jun 22, 2024

Languages You Know Influence Those You Learn: Impact of Language Characteristics on Multi-Lingual Text-to-Text Transfer

Multi-lingual language models (LM), such as mBERT, XLM-R, mT5, mBART, have been remarkably successful in enabling natural language tasks in low-resource languages through cross-lingual transfer from high-resource ones. In this work, we try to better understand how such models, specifically mT5, transfer *any* linguistic and semantic knowledge across languages, even though no explicit cross-lingual signals are provided during pre-training. Rather, only unannotated texts from each language are presented to the model separately and independently of one another, and the model appears to implicitly learn cross-lingual connections. This raises several questions that motivate our study, such as: Are the cross-lingual connections between every language pair equally strong? What properties of source and target language impact the strength of cross-lingual transfer? Can we quantify the impact of those properties on the cross-lingual transfer? In our investigation, we analyze a pre-trained mT5 to discover the attributes of cross-lingual connections learned by the model. Through a statistical interpretation framework over 90 language pairs across three tasks, we show that transfer performance can be modeled by a few linguistic and data-derived features. These observations enable us to interpret cross-lingual understanding of the mT5 model. Through these observations, one can favorably choose the best source language for a task, and can anticipate its training data demands. A key finding of this work is that similarity of syntax, morphology and phonology are good predictors of cross-lingual transfer, significantly more than just the lexical similarity of languages. For a given language, we are able to predict zero-shot performance, that increases on a logarithmic scale with the number of few-shot target language data points.

  • 6 authors
·
Dec 4, 2022

Tower+: Bridging Generality and Translation Specialization in Multilingual LLMs

Fine-tuning pretrained LLMs has been shown to be an effective strategy for reaching state-of-the-art performance on specific tasks like machine translation. However, this process of adaptation often implies sacrificing general-purpose capabilities, such as conversational reasoning and instruction-following, hampering the utility of the system in real-world applications that require a mixture of skills. In this paper, we introduce Tower+, a suite of models designed to deliver strong performance across both translation and multilingual general-purpose text capabilities. We achieve a Pareto frontier between translation specialization and multilingual general-purpose capabilities by introducing a novel training recipe that builds on Tower (Alves et al., 2024), comprising continued pretraining, supervised fine-tuning, preference optimization, and reinforcement learning with verifiable rewards. At each stage of training, we carefully generate and curate data to strengthen performance on translation as well as general-purpose tasks involving code generation, mathematics problem solving, and general instruction-following. We develop models at multiple scales: 2B, 9B, and 72B. Our smaller models often outperform larger general-purpose open-weight and proprietary LLMs (e.g., Llama 3.3 70B, GPT-4o). Our largest model delivers best-in-class translation performance for high-resource languages and top results in multilingual Arena Hard evaluations and in IF-MT, a benchmark we introduce for evaluating both translation and instruction-following. Our findings highlight that it is possible to rival frontier models in general capabilities, while optimizing for specific business domains, such as translation and localization.

  • 7 authors
·
Jun 20, 2025 2

I-MCTS: Enhancing Agentic AutoML via Introspective Monte Carlo Tree Search

Recent advancements in large language models (LLMs) have shown remarkable potential in automating machine learning tasks. However, existing LLM-based agents often struggle with low-diversity and suboptimal code generation. While recent work has introduced Monte Carlo Tree Search (MCTS) to address these issues, limitations persist in the quality and diversity of thoughts generated, as well as in the scalar value feedback mechanisms used for node selection. In this study, we introduce Introspective Monte Carlo Tree Search (I-MCTS), a novel approach that iteratively expands tree nodes through an introspective process that meticulously analyzes solutions and results from parent and sibling nodes. This facilitates a continuous refinement of the node in the search tree, thereby enhancing the overall decision-making process. Furthermore, we integrate a Large Language Model (LLM)-based value model to facilitate direct evaluation of each node's solution prior to conducting comprehensive computational rollouts. A hybrid rewarding mechanism is implemented to seamlessly transition the Q-value from LLM-estimated scores to actual performance scores. This allows higher-quality nodes to be traversed earlier. Applied to the various ML tasks, our approach demonstrates a 6% absolute improvement in performance compared to the strong open-source AutoML agents, showcasing its effectiveness in enhancing agentic AutoML systems. Resource available at https://github.com/jokieleung/I-MCTS

  • 6 authors
·
Feb 20, 2025

TALC: Time-Aligned Captions for Multi-Scene Text-to-Video Generation

Recent advances in diffusion-based generative modeling have led to the development of text-to-video (T2V) models that can generate high-quality videos conditioned on a text prompt. Most of these T2V models often produce single-scene video clips that depict an entity performing a particular action (e.g., `a red panda climbing a tree'). However, it is pertinent to generate multi-scene videos since they are ubiquitous in the real-world (e.g., `a red panda climbing a tree' followed by `the red panda sleeps on the top of the tree'). To generate multi-scene videos from the pretrained T2V model, we introduce Time-Aligned Captions (TALC) framework. Specifically, we enhance the text-conditioning mechanism in the T2V architecture to recognize the temporal alignment between the video scenes and scene descriptions. For instance, we condition the visual features of the earlier and later scenes of the generated video with the representations of the first scene description (e.g., `a red panda climbing a tree') and second scene description (e.g., `the red panda sleeps on the top of the tree'), respectively. As a result, we show that the T2V model can generate multi-scene videos that adhere to the multi-scene text descriptions and be visually consistent (e.g., entity and background). Further, we finetune the pretrained T2V model with multi-scene video-text data using the TALC framework. We show that the TALC-finetuned model outperforms the baseline methods by 15.5 points in the overall score, which averages visual consistency and text adherence using human evaluation. The project website is https://talc-mst2v.github.io/.

  • 6 authors
·
May 7, 2024

Breaking Language Barriers in Multilingual Mathematical Reasoning: Insights and Observations

Existing research predominantly focuses on developing powerful language learning models (LLMs) for mathematical reasoning within monolingual languages, with few explorations in preserving efficacy in a multilingual context. To bridge this gap, this paper pioneers exploring and training powerful Multilingual Math Reasoning (xMR) LLMs. Firstly, by utilizing translation, we construct the first multilingual math reasoning instruction dataset, MGSM8KInstruct, encompassing ten distinct languages, thus addressing the issue of training data scarcity in xMR tasks. Based on the collected dataset, we propose different training strategies to build powerful xMR LLMs, named MathOctopus, notably outperform conventional open-source LLMs and exhibit superiority over ChatGPT in few-shot scenarios. Notably, MathOctopus-13B reaches 47.6% accuracy which exceeds ChatGPT 46.3% on MGSM testset. Beyond remarkable results, we unearth several pivotal observations and insights from extensive experiments: (1) When extending the rejection sampling strategy to the multilingual context, it proves effective for model performances, albeit limited. (2) Employing parallel corpora for math Supervised Fine-Tuning (SFT) across multiple languages not only significantly enhances model performance multilingually but also elevates their monolingual performance. This indicates that crafting multilingual corpora can be regarded as a vital strategy for enhancing model performance in a specific language, especially in mathematical reasoning tasks. For instance, MathOctopus-7B improves its counterparts that trained on English from 42.2% to 50.8% on GSM8K testset.

  • 8 authors
·
Oct 31, 2023 1

AlphaMath Almost Zero: process Supervision without process

Recent advancements in large language models (LLMs) have substantially enhanced their mathematical reasoning abilities. However, these models still struggle with complex problems that require multiple reasoning steps, frequently leading to logical or numerical errors. While numerical mistakes can be largely addressed by integrating a code interpreter, identifying logical errors within intermediate steps is more challenging. Moreover, manually annotating these steps for training is not only expensive but also labor-intensive, requiring the expertise of professional annotators. In our study, we introduce an innovative approach that bypasses the need for process annotations (from human or GPTs) by utilizing the Monte Carlo Tree Search (MCTS) framework. This technique automatically generates both the process supervision and the step-level evaluation signals. Our method iteratively trains the policy and value models, leveraging the capabilities of a well-pretrained LLM to progressively enhance its mathematical reasoning skills. Furthermore, we propose an efficient inference strategy-step-level beam search, where the value model is crafted to assist the policy model (i.e., LLM) in navigating more effective reasoning paths, rather than solely relying on prior probabilities. The experimental results on both in-domain and out-of-domain datasets demonstrate that even without GPT-4 or human-annotated process supervision, our AlphaMath framework achieves comparable or superior results to previous state-of-the-art methods.

  • 4 authors
·
May 6, 2024

MASTER: A Multi-Agent System with LLM Specialized MCTS

Large Language Models (LLM) are increasingly being explored for problem-solving tasks. However, their strategic planning capability is often viewed with skepticism. Recent studies have incorporated the Monte Carlo Tree Search (MCTS) algorithm to augment the planning capacity of LLM. Despite its potential, MCTS relies on extensive sampling simulations to approximate the true reward distribution, which leads to two primary issues. Firstly, MCTS is effective for tasks like the Game of Go, where simulation results can yield objective rewards (e.g., 1 for a win and 0 for a loss). However, for tasks such as question answering, the result of a simulation is the answer to the question, which cannot yield an objective reward without the ground truth. Secondly, obtaining statistically significant reward estimations typically requires a sample size exceeding 30 simulations, resulting in excessive token usage and time consumption. To address these challenges, we present the Multi-Agent System with Tactical Execution and Reasoning using LLM Specialized MCTS (MASTER), a novel framework that coordinates agent recruitment and communication through LLM specialized MCTS. This system autonomously adjusts the number of agents based on task complexity and ensures focused communication among them. Comprehensive experiments across various tasks demonstrate the effectiveness of our proposed framework. It achieves 76% accuracy on HotpotQA and 80% on WebShop, setting new state-of-the-art performance on these datasets.

  • 8 authors
·
Jan 24, 2025 2

CAT: Curvature-Adaptive Transformers for Geometry-Aware Learning

Transformers achieve strong performance across diverse domains but implicitly assume Euclidean geometry in their attention mechanisms, limiting their effectiveness on data with non-Euclidean structure. While recent extensions to hyperbolic and spherical spaces show promise for hierarchical and cyclical patterns, respectively, they require committing to a single geometry a priori, reducing flexibility when data exhibits mixed geometric properties. We introduce the Curvature-Adaptive Transformer (CAT), a novel architecture that dynamically learns per-token routing across three geometric attention branches through a lightweight, differentiable gating mechanism. Unlike fixed-geometry approaches, CAT enables adaptive geometric specialization, routing tokens to the appropriate curvature based on their local relational structure. The routing network provides interpretable curvature preferences while each branch employs geometry-specific operations optimized for its respective manifold. On knowledge graph completion benchmarks (FB15k-237, WN18RR), CAT achieves approximately 10% improvements in MRR and Hits@10 over fixed-geometry baselines with minimal overhead (5% parameter increase, comparable inference time). These results demonstrate that learned geometric adaptation outperforms any single fixed geometry for complex relational reasoning, establishing CAT as a scalable and interpretable foundation for mixture-of-geometry architectures across language, vision, and multimodal domains.

  • 3 authors
·
Oct 1, 2025

Beyond English: Toward Inclusive and Scalable Multilingual Machine Translation with LLMs

Large language models have significantly advanced Multilingual Machine Translation (MMT), yet the broad language coverage, consistent translation quality, and English-centric bias remain open challenges. To address these challenges, we introduce LMT, a suite of Large-scale Multilingual Translation models centered on both Chinese and English, covering 60 languages and 234 translation directions. During development, we identify a previously overlooked phenomenon of directional degeneration, where symmetric multi-way fine-tuning data overemphasize reverse directions (X to En/Zh), leading to excessive many-to-one mappings and degraded translation quality. We propose Strategic Downsampling, a simple yet effective method to mitigate this degeneration. In addition, we design Parallel Multilingual Prompting (PMP), which leverages typologically related auxiliary languages to enhance cross-lingual transfer. Through rigorous data curation and refined adaptation strategies, LMT achieves SOTA performance among models of comparable language coverage, with our 4B model (LMT-60-4B) surpassing the much larger Aya-101-13B and NLLB-54B models by a substantial margin. We release LMT in four sizes (0.6B/1.7B/4B/8B) to catalyze future research and provide strong baselines for inclusive, scalable, and high-quality MMT \href{https://github.com/NiuTrans/LMT{https://github.com/NiuTrans/LMT}}.

NiuTrans NiuTrans
·
Nov 10, 2025 2

Vega-MT: The JD Explore Academy Translation System for WMT22

We describe the JD Explore Academy's submission of the WMT 2022 shared general translation task. We participated in all high-resource tracks and one medium-resource track, including Chinese-English, German-English, Czech-English, Russian-English, and Japanese-English. We push the limit of our previous work -- bidirectional training for translation by scaling up two main factors, i.e. language pairs and model sizes, namely the Vega-MT system. As for language pairs, we scale the "bidirectional" up to the "multidirectional" settings, covering all participating languages, to exploit the common knowledge across languages, and transfer them to the downstream bilingual tasks. As for model sizes, we scale the Transformer-Big up to the extremely large model that owns nearly 4.7 Billion parameters, to fully enhance the model capacity for our Vega-MT. Also, we adopt the data augmentation strategies, e.g. cycle translation for monolingual data, and bidirectional self-training for bilingual and monolingual data, to comprehensively exploit the bilingual and monolingual data. To adapt our Vega-MT to the general domain test set, generalization tuning is designed. Based on the official automatic scores of constrained systems, in terms of the sacreBLEU shown in Figure-1, we got the 1st place on {Zh-En (33.5), En-Zh (49.7), De-En (33.7), En-De (37.8), Cs-En (54.9), En-Cs (41.4) and En-Ru (32.7)}, 2nd place on {Ru-En (45.1) and Ja-En (25.6)}, and 3rd place on {En-Ja(41.5)}, respectively; W.R.T the COMET, we got the 1st place on {Zh-En (45.1), En-Zh (61.7), De-En (58.0), En-De (63.2), Cs-En (74.7), Ru-En (64.9), En-Ru (69.6) and En-Ja (65.1)}, 2nd place on {En-Cs (95.3) and Ja-En (40.6)}, respectively.

  • 12 authors
·
Sep 19, 2022

UniGeo: Unifying Geometry Logical Reasoning via Reformulating Mathematical Expression

Geometry problem solving is a well-recognized testbed for evaluating the high-level multi-modal reasoning capability of deep models. In most existing works, two main geometry problems: calculation and proving, are usually treated as two specific tasks, hindering a deep model to unify its reasoning capability on multiple math tasks. However, in essence, these two tasks have similar problem representations and overlapped math knowledge which can improve the understanding and reasoning ability of a deep model on both two tasks. Therefore, we construct a large-scale Unified Geometry problem benchmark, UniGeo, which contains 4,998 calculation problems and 9,543 proving problems. Each proving problem is annotated with a multi-step proof with reasons and mathematical expressions. The proof can be easily reformulated as a proving sequence that shares the same formats with the annotated program sequence for calculation problems. Naturally, we also present a unified multi-task Geometric Transformer framework, Geoformer, to tackle calculation and proving problems simultaneously in the form of sequence generation, which finally shows the reasoning ability can be improved on both two tasks by unifying formulation. Furthermore, we propose a Mathematical Expression Pretraining (MEP) method that aims to predict the mathematical expressions in the problem solution, thus improving the Geoformer model. Experiments on the UniGeo demonstrate that our proposed Geoformer obtains state-of-the-art performance by outperforming task-specific model NGS with over 5.6% and 3.2% accuracies on calculation and proving problems, respectively.

  • 7 authors
·
Dec 5, 2022

Edge-MoE: Memory-Efficient Multi-Task Vision Transformer Architecture with Task-level Sparsity via Mixture-of-Experts

Computer vision researchers are embracing two promising paradigms: Vision Transformers (ViTs) and Multi-task Learning (MTL), which both show great performance but are computation-intensive, given the quadratic complexity of self-attention in ViT and the need to activate an entire large MTL model for one task. M^3ViT is the latest multi-task ViT model that introduces mixture-of-experts (MoE), where only a small portion of subnetworks ("experts") are sparsely and dynamically activated based on the current task. M^3ViT achieves better accuracy and over 80% computation reduction but leaves challenges for efficient deployment on FPGA. Our work, dubbed Edge-MoE, solves the challenges to introduce the first end-to-end FPGA accelerator for multi-task ViT with a collection of architectural innovations, including (1) a novel reordering mechanism for self-attention, which requires only constant bandwidth regardless of the target parallelism; (2) a fast single-pass softmax approximation; (3) an accurate and low-cost GELU approximation; (4) a unified and flexible computing unit that is shared by almost all computational layers to maximally reduce resource usage; and (5) uniquely for M^3ViT, a novel patch reordering method to eliminate memory access overhead. Edge-MoE achieves 2.24x and 4.90x better energy efficiency comparing with GPU and CPU, respectively. A real-time video demonstration is available online, along with our open-source code written using High-Level Synthesis.

  • 5 authors
·
May 29, 2023

A Multi-task Multi-stage Transitional Training Framework for Neural Chat Translation

Neural chat translation (NCT) aims to translate a cross-lingual chat between speakers of different languages. Existing context-aware NMT models cannot achieve satisfactory performances due to the following inherent problems: 1) limited resources of annotated bilingual dialogues; 2) the neglect of modelling conversational properties; 3) training discrepancy between different stages. To address these issues, in this paper, we propose a multi-task multi-stage transitional (MMT) training framework, where an NCT model is trained using the bilingual chat translation dataset and additional monolingual dialogues. We elaborately design two auxiliary tasks, namely utterance discrimination and speaker discrimination, to introduce the modelling of dialogue coherence and speaker characteristic into the NCT model. The training process consists of three stages: 1) sentence-level pre-training on large-scale parallel corpus; 2) intermediate training with auxiliary tasks using additional monolingual dialogues; 3) context-aware fine-tuning with gradual transition. Particularly, the second stage serves as an intermediate phase that alleviates the training discrepancy between the pre-training and fine-tuning stages. Moreover, to make the stage transition smoother, we train the NCT model using a gradual transition strategy, i.e., gradually transiting from using monolingual to bilingual dialogues. Extensive experiments on two language pairs demonstrate the effectiveness and superiority of our proposed training framework.

  • 8 authors
·
Jan 27, 2023

BayLing: Bridging Cross-lingual Alignment and Instruction Following through Interactive Translation for Large Language Models

Large language models (LLMs) have demonstrated remarkable prowess in language understanding and generation. Advancing from foundation LLMs to instructionfollowing LLMs, instruction tuning plays a vital role in aligning LLMs to human preferences. However, the existing LLMs are usually focused on English, leading to inferior performance in non-English languages. In order to improve the performance for non-English languages, it is necessary to collect language-specific training data for foundation LLMs and construct language-specific instructions for instruction tuning, both of which are heavy loads. To minimize human workload, we propose to transfer the capabilities of language generation and instruction following from English to other languages through an interactive translation task. We have developed BayLing, an instruction-following LLM by utilizing LLaMA as the foundation LLM and automatically constructing interactive translation instructions for instructing tuning. Extensive assessments demonstrate that BayLing achieves comparable performance to GPT-3.5-turbo, despite utilizing a considerably smaller parameter size of only 13 billion. Experimental results on translation tasks show that BayLing achieves 95% of single-turn translation capability compared to GPT-4 with automatic evaluation and 96% of interactive translation capability compared to GPT-3.5-turbo with human evaluation. To estimate the performance on general tasks, we created a multi-turn instruction test set called BayLing-80. The experimental results on BayLing-80 indicate that BayLing achieves 89% of performance compared to GPT-3.5-turbo. BayLing also demonstrates outstanding performance on knowledge assessment of Chinese GaoKao and English SAT, second only to GPT-3.5-turbo among a multitude of instruction-following LLMs. Demo, homepage, code and models of BayLing are available.

  • 11 authors
·
Jun 19, 2023

M^3ViT: Mixture-of-Experts Vision Transformer for Efficient Multi-task Learning with Model-Accelerator Co-design

Multi-task learning (MTL) encapsulates multiple learned tasks in a single model and often lets those tasks learn better jointly. However, when deploying MTL onto those real-world systems that are often resource-constrained or latency-sensitive, two prominent challenges arise: (i) during training, simultaneously optimizing all tasks is often difficult due to gradient conflicts across tasks; (ii) at inference, current MTL regimes have to activate nearly the entire model even to just execute a single task. Yet most real systems demand only one or two tasks at each moment, and switch between tasks as needed: therefore such all tasks activated inference is also highly inefficient and non-scalable. In this paper, we present a model-accelerator co-design framework to enable efficient on-device MTL. Our framework, dubbed M^3ViT, customizes mixture-of-experts (MoE) layers into a vision transformer (ViT) backbone for MTL, and sparsely activates task-specific experts during training. Then at inference with any task of interest, the same design allows for activating only the task-corresponding sparse expert pathway, instead of the full model. Our new model design is further enhanced by hardware-level innovations, in particular, a novel computation reordering scheme tailored for memory-constrained MTL that achieves zero-overhead switching between tasks and can scale to any number of experts. When executing single-task inference, M^{3}ViT achieves higher accuracies than encoder-focused MTL methods, while significantly reducing 88% inference FLOPs. When implemented on a hardware platform of one Xilinx ZCU104 FPGA, our co-design framework reduces the memory requirement by 2.4 times, while achieving energy efficiency up to 9.23 times higher than a comparable FPGA baseline. Code is available at: https://github.com/VITA-Group/M3ViT.

  • 9 authors
·
Oct 26, 2022

Multimodality-guided Image Style Transfer using Cross-modal GAN Inversion

Image Style Transfer (IST) is an interdisciplinary topic of computer vision and art that continuously attracts researchers' interests. Different from traditional Image-guided Image Style Transfer (IIST) methods that require a style reference image as input to define the desired style, recent works start to tackle the problem in a text-guided manner, i.e., Text-guided Image Style Transfer (TIST). Compared to IIST, such approaches provide more flexibility with text-specified styles, which are useful in scenarios where the style is hard to define with reference images. Unfortunately, many TIST approaches produce undesirable artifacts in the transferred images. To address this issue, we present a novel method to achieve much improved style transfer based on text guidance. Meanwhile, to offer more flexibility than IIST and TIST, our method allows style inputs from multiple sources and modalities, enabling MultiModality-guided Image Style Transfer (MMIST). Specifically, we realize MMIST with a novel cross-modal GAN inversion method, which generates style representations consistent with specified styles. Such style representations facilitate style transfer and in principle generalize any IIST methods to MMIST. Large-scale experiments and user studies demonstrate that our method achieves state-of-the-art performance on TIST task. Furthermore, comprehensive qualitative results confirm the effectiveness of our method on MMIST task and cross-modal style interpolation.

  • 5 authors
·
Dec 4, 2023

Evaluating Multimodal Large Language Models on Video Captioning via Monte Carlo Tree Search

Video captioning can be used to assess the video understanding capabilities of Multimodal Large Language Models (MLLMs). However, existing benchmarks and evaluation protocols suffer from crucial issues, such as inadequate or homogeneous creation of key points, exorbitant cost of data creation, and limited evaluation scopes. To address these issues, we propose an automatic framework, named AutoCaption, which leverages Monte Carlo Tree Search (MCTS) to construct numerous and diverse descriptive sentences (i.e., key points) that thoroughly represent video content in an iterative way. This iterative captioning strategy enables the continuous enhancement of video details such as actions, objects' attributes, environment details, etc. We apply AutoCaption to curate MCTS-VCB, a fine-grained video caption benchmark covering video details, thereby enabling a comprehensive evaluation of MLLMs on the video captioning task. We evaluate more than 20 open- and closed-source MLLMs of varying sizes on MCTS-VCB. Results show that MCTS-VCB can effectively and comprehensively evaluate the video captioning capability, with Gemini-1.5-Pro achieving the highest F1 score of 71.2. Interestingly, we fine-tune InternVL2.5-8B with the AutoCaption-generated data, which helps the model achieve an overall improvement of 25.0% on MCTS-VCB and 16.3% on DREAM-1K, further demonstrating the effectiveness of AutoCaption. The code and data are available at https://github.com/tjunlp-lab/MCTS-VCB.

  • 10 authors
·
Jun 11, 2025

SoTA with Less: MCTS-Guided Sample Selection for Data-Efficient Visual Reasoning Self-Improvement

In this paper, we present an effective method to enhance visual reasoning with significantly fewer training samples, relying purely on self-improvement with no knowledge distillation. Our key insight is that the difficulty of training data during reinforcement fine-tuning (RFT) is critical. Appropriately challenging samples can substantially boost reasoning capabilities even when the dataset is small. Despite being intuitive, the main challenge remains in accurately quantifying sample difficulty to enable effective data filtering. To this end, we propose a novel way of repurposing Monte Carlo Tree Search (MCTS) to achieve that. Starting from our curated 70k open-source training samples, we introduce an MCTS-based selection method that quantifies sample difficulty based on the number of iterations required by the VLMs to solve each problem. This explicit step-by-step reasoning in MCTS enforces the model to think longer and better identifies samples that are genuinely challenging. We filter and retain 11k samples to perform RFT on Qwen2.5-VL-7B-Instruct, resulting in our final model, ThinkLite-VL. Evaluation results on eight benchmarks show that ThinkLite-VL improves the average performance of Qwen2.5-VL-7B-Instruct by 7%, using only 11k training samples with no knowledge distillation. This significantly outperforms all existing 7B-level reasoning VLMs, and our fairly comparable baselines that use classic selection methods such as accuracy-based filtering. Notably, on MathVista, ThinkLite-VL-7B achieves the SoTA accuracy of 75.1, surpassing Qwen2.5-VL-72B, GPT-4o, and O1. Our code, data, and model are available at https://github.com/si0wang/ThinkLite-VL.

  • 9 authors
·
Apr 10, 2025 2

Hunyuan-MT Technical Report

In this report, we introduce Hunyuan-MT-7B, our first open-source multilingual translation model, which supports bidirectional translation across 33 major languages and places a special emphasis on translation between Mandarin and several ethnic minority languages as well as dialects. Furthermore, to serve and address diverse translation scenarios and enhance model performance at test time, we introduce Hunyuan-MT-Chimera-7B, a translation model inspired by the slow thinking mode. This model integrates multiple outputs generated by the Hunyuan-MT-7B model under varying parameter settings, thereby achieving performance superior to that of conventional slow-thinking models based on Chain-of-Thought (CoT). The development of our models follows a holistic training process specifically engineered for multilingual translation, which begins with general and MT-oriented pre-training to build foundational capabilities, proceeds to Supervised Fine-Tuning (SFT) for task-specific adaptation, and culminates in advanced alignment through Reinforcement Learning (RL) and weak-to-strong RL. Through comprehensive experimentation, we demonstrate that both Hunyuan-MT-7B and Hunyuan-MT-Chimera-7B significantly outperform all translation-specific models of comparable parameter size and most of the SOTA large models, particularly on the task of translation between Mandarin and minority languages as well as dialects. In the WMT2025 shared task (General Machine Translation), our models demonstrate state-of-the-art performance, ranking first in 30 out of 31 language pairs. This result highlights the robustness of our models across a diverse linguistic spectrum, encompassing high-resource languages such as Chinese, English, and Japanese, as well as low-resource languages including Czech, Marathi, Estonian, and Icelandic.

  • 7 authors
·
Sep 5, 2025 3

Promoting Generalized Cross-lingual Question Answering in Few-resource Scenarios via Self-knowledge Distillation

Despite substantial progress in multilingual extractive Question Answering (QA), models with high and uniformly distributed performance across languages remain challenging, especially for languages with limited resources. We study cross-lingual transfer mainly focusing on the Generalized Cross-Lingual Transfer (G-XLT) task, where the question language differs from the context language - a challenge that has received limited attention thus far. Our approach seeks to enhance cross-lingual QA transfer using a high-performing multilingual model trained on a large-scale dataset, complemented by a few thousand aligned QA examples across languages. Our proposed strategy combines cross-lingual sampling and advanced self-distillation training in generations to tackle the previous challenge. Notably, we introduce the novel mAP@k coefficients to fine-tune self-knowledge distillation loss, dynamically regulating the teacher's model knowledge to perform a balanced and effective knowledge transfer. We extensively evaluate our approach to assess XLT and G-XLT capabilities in extractive QA. Results reveal that our self-knowledge distillation approach outperforms standard cross-entropy fine-tuning by a significant margin. Importantly, when compared to a strong baseline that leverages a sizeable volume of machine-translated data, our approach shows competitive results despite the considerable challenge of operating within resource-constrained settings, even in zero-shot scenarios. Beyond performance improvements, we offer valuable insights through comprehensive analyses and an ablation study, further substantiating the benefits and constraints of our approach. In essence, we propose a practical solution to improve cross-lingual QA transfer by leveraging a few data resources in an efficient way.

  • 3 authors
·
Sep 29, 2023

Test-Time Scaling of Reasoning Models for Machine Translation

Test-time scaling (TTS) has enhanced the performance of Reasoning Models (RMs) on various tasks such as math and coding, yet its efficacy in machine translation (MT) remains underexplored. This paper investigates whether increased inference-time computation improves translation quality. We evaluate 12 RMs across a diverse suite of MT benchmarks spanning multiple domains, examining three scenarios: direct translation, forced-reasoning extrapolation, and post-editing. Our findings show that for general-purpose RMs, TTS provides limited and inconsistent benefits for direct translation, with performance quickly plateauing. However, the effectiveness of TTS is unlocked by domain-specific fine-tuning, which aligns a model's reasoning process with task requirements, leading to consistent improvements up to an optimal, self-determined reasoning depth. We also find that forcing a model to reason beyond its natural stopping point consistently degrades translation quality. In contrast, TTS proves highly effective in a post-editing context, reliably turning self-correction into a beneficial process. These results indicate that the value of inference-time computation in MT lies not in enhancing single-pass translation with general models, but in targeted applications like multi-step, self-correction workflows and in conjunction with task-specialized models.

How Well Does GPT-4o Understand Vision? Evaluating Multimodal Foundation Models on Standard Computer Vision Tasks

Multimodal foundation models, such as GPT-4o, have recently made remarkable progress, but it is not clear where exactly these models stand in terms of understanding vision. In this paper, we benchmark the performance of popular multimodal foundation models (GPT-4o, o4-mini, Gemini 1.5 Pro and Gemini 2.0 Flash, Claude 3.5 Sonnet, Qwen2-VL, Llama 3.2) on standard computer vision tasks (semantic segmentation, object detection, image classification, depth and surface normal prediction) using established datasets (e.g., COCO, ImageNet and its variants, etc). The main challenges to performing this are: 1) most models are trained to output text and cannot natively express versatile domains, such as segments or 3D geometry, and 2) many leading models are proprietary and accessible only at an API level, i.e., there is no weight access to adapt them. We address these challenges by translating standard vision tasks into equivalent text-promptable and API-compatible tasks via prompt chaining to create a standardized benchmarking framework. We observe that 1) the models are not close to the state-of-the-art specialist models at any task. However, 2) they are respectable generalists; this is remarkable as they are presumably trained on primarily image-text-based tasks. 3) They perform semantic tasks notably better than geometric ones. 4) While the prompt-chaining techniques affect performance, better models exhibit less sensitivity to prompt variations. 5) GPT-4o performs the best among non-reasoning models, securing the top position in 4 out of 6 tasks, 6) reasoning models, e.g. o3, show improvements in geometric tasks, and 7) a preliminary analysis of models with native image generation, like the latest GPT-4o, shows they exhibit quirks like hallucinations and spatial misalignments.

  • 6 authors
·
Jul 2, 2025 2