import torch, torchvision, imageio, os, json, pandas import imageio.v3 as iio from PIL import Image class DataProcessingPipeline: def __init__(self, operators=None): self.operators: list[DataProcessingOperator] = [] if operators is None else operators def __call__(self, data): for operator in self.operators: data = operator(data) return data def __rshift__(self, pipe): if isinstance(pipe, DataProcessingOperator): pipe = DataProcessingPipeline([pipe]) return DataProcessingPipeline(self.operators + pipe.operators) class DataProcessingOperator: def __call__(self, data): raise NotImplementedError("DataProcessingOperator cannot be called directly.") def __rshift__(self, pipe): if isinstance(pipe, DataProcessingOperator): pipe = DataProcessingPipeline([pipe]) return DataProcessingPipeline([self]).__rshift__(pipe) class DataProcessingOperatorRaw(DataProcessingOperator): def __call__(self, data): return data class ToInt(DataProcessingOperator): def __call__(self, data): return int(data) class ToFloat(DataProcessingOperator): def __call__(self, data): return float(data) class ToStr(DataProcessingOperator): def __init__(self, none_value=""): self.none_value = none_value def __call__(self, data): if data is None: data = self.none_value return str(data) class LoadImage(DataProcessingOperator): def __init__(self, convert_RGB=True): self.convert_RGB = convert_RGB def __call__(self, data: str): image = Image.open(data) if self.convert_RGB: image = image.convert("RGB") return image class ImageCropAndResize(DataProcessingOperator): def __init__(self, height, width, max_pixels, height_division_factor, width_division_factor): self.height = height self.width = width self.max_pixels = max_pixels self.height_division_factor = height_division_factor self.width_division_factor = width_division_factor def crop_and_resize(self, image, target_height, target_width): width, height = image.size scale = max(target_width / width, target_height / height) image = torchvision.transforms.functional.resize( image, (round(height*scale), round(width*scale)), interpolation=torchvision.transforms.InterpolationMode.BILINEAR ) image = torchvision.transforms.functional.center_crop(image, (target_height, target_width)) return image def get_height_width(self, image): if self.height is None or self.width is None: width, height = image.size if width * height > self.max_pixels: scale = (width * height / self.max_pixels) ** 0.5 height, width = int(height / scale), int(width / scale) height = height // self.height_division_factor * self.height_division_factor width = width // self.width_division_factor * self.width_division_factor else: height, width = self.height, self.width return height, width def __call__(self, data: Image.Image): image = self.crop_and_resize(data, *self.get_height_width(data)) return image class ToList(DataProcessingOperator): def __call__(self, data): return [data] class LoadVideo(DataProcessingOperator): def __init__(self, num_frames=81, time_division_factor=4, time_division_remainder=1, frame_processor=lambda x: x): self.num_frames = num_frames self.time_division_factor = time_division_factor self.time_division_remainder = time_division_remainder # frame_processor is build in the video loader for high efficiency. self.frame_processor = frame_processor def get_num_frames(self, reader): num_frames = self.num_frames if int(reader.count_frames()) < num_frames: num_frames = int(reader.count_frames()) while num_frames > 1 and num_frames % self.time_division_factor != self.time_division_remainder: num_frames -= 1 return num_frames def __call__(self, data: str): reader = imageio.get_reader(data) num_frames = self.get_num_frames(reader) frames = [] for frame_id in range(num_frames): frame = reader.get_data(frame_id) frame = Image.fromarray(frame) frame = self.frame_processor(frame) frames.append(frame) reader.close() return frames class SequencialProcess(DataProcessingOperator): def __init__(self, operator=lambda x: x): self.operator = operator def __call__(self, data): return [self.operator(i) for i in data] class LoadGIF(DataProcessingOperator): def __init__(self, num_frames=81, time_division_factor=4, time_division_remainder=1, frame_processor=lambda x: x): self.num_frames = num_frames self.time_division_factor = time_division_factor self.time_division_remainder = time_division_remainder # frame_processor is build in the video loader for high efficiency. self.frame_processor = frame_processor def get_num_frames(self, path): num_frames = self.num_frames images = iio.imread(path, mode="RGB") if len(images) < num_frames: num_frames = len(images) while num_frames > 1 and num_frames % self.time_division_factor != self.time_division_remainder: num_frames -= 1 return num_frames def __call__(self, data: str): num_frames = self.get_num_frames(data) frames = [] images = iio.imread(data, mode="RGB") for img in images: frame = Image.fromarray(img) frame = self.frame_processor(frame) frames.append(frame) if len(frames) >= num_frames: break return frames class RouteByExtensionName(DataProcessingOperator): def __init__(self, operator_map): self.operator_map = operator_map def __call__(self, data: str): file_ext_name = data.split(".")[-1].lower() for ext_names, operator in self.operator_map: if ext_names is None or file_ext_name in ext_names: return operator(data) raise ValueError(f"Unsupported file: {data}") class RouteByType(DataProcessingOperator): def __init__(self, operator_map): self.operator_map = operator_map def __call__(self, data): for dtype, operator in self.operator_map: if dtype is None or isinstance(data, dtype): return operator(data) raise ValueError(f"Unsupported data: {data}") class LoadTorchPickle(DataProcessingOperator): def __init__(self, map_location="cpu"): self.map_location = map_location def __call__(self, data): return torch.load(data, map_location=self.map_location, weights_only=False) class ToAbsolutePath(DataProcessingOperator): def __init__(self, base_path=""): self.base_path = base_path def __call__(self, data): return os.path.join(self.base_path, data) class LoadAudio(DataProcessingOperator): def __init__(self, sr=16000): self.sr = sr def __call__(self, data: str): import librosa input_audio, sample_rate = librosa.load(data, sr=self.sr) return input_audio class UnifiedDataset(torch.utils.data.Dataset): def __init__( self, base_path=None, metadata_path=None, repeat=1, data_file_keys=tuple(), main_data_operator=lambda x: x, special_operator_map=None, default_caption=None,): self.base_path = base_path self.default_caption = default_caption self.metadata_path = metadata_path self.repeat = repeat self.data_file_keys = data_file_keys self.main_data_operator = main_data_operator self.cached_data_operator = LoadTorchPickle() self.special_operator_map = {} if special_operator_map is None else special_operator_map self.data = [] self.cached_data = [] self.load_from_cache = metadata_path is None self.load_metadata(metadata_path) @staticmethod def default_image_operator( base_path="", max_pixels=1920*1080, height=None, width=None, height_division_factor=16, width_division_factor=16, ): return RouteByType(operator_map=[ (str, ToAbsolutePath(base_path) >> LoadImage() >> ImageCropAndResize(height, width, max_pixels, height_division_factor, width_division_factor)), (list, SequencialProcess(ToAbsolutePath(base_path) >> LoadImage() >> ImageCropAndResize(height, width, max_pixels, height_division_factor, width_division_factor))), ]) @staticmethod def default_video_operator( base_path="", max_pixels=1920*1080, height=None, width=None, height_division_factor=16, width_division_factor=16, num_frames=81, time_division_factor=4, time_division_remainder=1, ): return RouteByType(operator_map=[ (str, ToAbsolutePath(base_path) >> RouteByExtensionName(operator_map=[ (("jpg", "jpeg", "png", "webp"), LoadImage() >> ImageCropAndResize(height, width, max_pixels, height_division_factor, width_division_factor) >> ToList()), (("gif",), LoadGIF( num_frames, time_division_factor, time_division_remainder, frame_processor=ImageCropAndResize(height, width, max_pixels, height_division_factor, width_division_factor), )), (("mp4", "avi", "mov", "wmv", "mkv", "flv", "webm"), LoadVideo( num_frames, time_division_factor, time_division_remainder, frame_processor=ImageCropAndResize(height, width, max_pixels, height_division_factor, width_division_factor), )), ])), ]) def search_for_cached_data_files(self, path): for file_name in os.listdir(path): subpath = os.path.join(path, file_name) if os.path.isdir(subpath): self.search_for_cached_data_files(subpath) elif subpath.endswith(".pth"): self.cached_data.append(subpath) def load_metadata(self, metadata_path): if metadata_path is None: print("No metadata_path. Searching for cached data files.") self.search_for_cached_data_files(self.base_path) print(f"{len(self.cached_data)} cached data files found.") elif metadata_path.endswith(".json"): with open(metadata_path, "r") as f: metadata = json.load(f) self.data = metadata elif metadata_path.endswith(".jsonl"): metadata = [] with open(metadata_path, 'r') as f: for line in f: metadata.append(json.loads(line.strip())) self.data = metadata elif metadata_path.endswith(".txt"): with open(metadata_path, "r") as f: lines = f.readlines() # self.data_file_keys: image, kontext_images 1x2 # lines nx2 self.data = [] for line in lines: items = line.strip().split("\t") data_entry = {} for key, item in zip(self.data_file_keys, items): data_entry[key] = item data_entry["prompt"] = self.default_caption self.data.append(data_entry) else: metadata = pandas.read_csv(metadata_path) self.data = [metadata.iloc[i].to_dict() for i in range(len(metadata))] def __getitem__(self, data_id): if self.load_from_cache: data = self.cached_data[data_id % len(self.cached_data)] data = self.cached_data_operator(data) else: data = self.data[data_id % len(self.data)].copy() for key in self.data_file_keys: if key in data: if key in self.special_operator_map: data[key] = self.special_operator_map[key](data[key]) elif key == "prompt": pass elif key in self.data_file_keys: data[key] = self.main_data_operator(data[key]) return data def __len__(self): if self.load_from_cache: return len(self.cached_data) * self.repeat else: return len(self.data) * self.repeat def check_data_equal(self, data1, data2): # Debug only if len(data1) != len(data2): return False for k in data1: if data1[k] != data2[k]: return False return True