import torch from PIL import Image from diffsynth.pipelines.flux_image_new import FluxImagePipeline, ModelConfig pipe = FluxImagePipeline.from_pretrained( torch_dtype=torch.bfloat16, device="cuda", model_configs=[ ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="flux1-dev.safetensors"), ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="text_encoder/model.safetensors"), ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="text_encoder_2/"), ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="ae.safetensors"), ], ) pipe.load_lora(pipe.dit, "models/train/FLUX.1-dev-EliGen_lora/epoch-4.safetensors", alpha=1) entity_prompts = ["A beautiful girl", "sign 'Entity Control'", "shorts", "shirt"] global_prompt = "A beautiful girl wearing shirt and shorts in the street, holding a sign 'Entity Control'" masks = [Image.open(f"data/example_image_dataset/eligen/{i}.png").convert('RGB') for i in range(len(entity_prompts))] # generate image image = pipe( prompt=global_prompt, cfg_scale=1.0, num_inference_steps=50, embedded_guidance=3.5, seed=42, height=1024, width=1024, eligen_entity_prompts=entity_prompts, eligen_entity_masks=masks, ) image.save(f"EliGen_lora.png")