import torch from diffsynth.pipelines.flux_image_new import FluxImagePipeline, ModelConfig, ControlNetInput from diffsynth import load_state_dict from PIL import Image pipe = FluxImagePipeline.from_pretrained( torch_dtype=torch.bfloat16, device="cuda", model_configs=[ ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="flux1-dev.safetensors"), ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="text_encoder/model.safetensors"), ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="text_encoder_2/"), ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="ae.safetensors"), ModelConfig(model_id="InstantX/FLUX.1-dev-Controlnet-Union-alpha", origin_file_pattern="diffusion_pytorch_model.safetensors"), ], ) state_dict = load_state_dict("models/train/FLUX.1-dev-Controlnet-Union-alpha_full/epoch-0.safetensors") pipe.controlnet.models[0].load_state_dict(state_dict) image = pipe( prompt="a dog", controlnet_inputs=[ControlNetInput( image=Image.open("data/example_image_dataset/canny/image_1.jpg"), scale=0.9, processor_id="canny", )], height=768, width=768, seed=0, rand_device="cuda", ) image.save("image_FLUX.1-dev-Controlnet-Union-alpha_full.jpg")