import importlib import torch from PIL import Image from diffsynth.pipelines.flux_image_new import FluxImagePipeline, ModelConfig from modelscope import dataset_snapshot_download if importlib.util.find_spec("transformers") is None: raise ImportError("You are using Nexus-GenV2. It depends on transformers, which is not installed. Please install it with `pip install transformers==4.49.0`.") else: import transformers assert transformers.__version__ == "4.49.0", "Nexus-GenV2 requires transformers==4.49.0, please install it with `pip install transformers==4.49.0`." pipe = FluxImagePipeline.from_pretrained( torch_dtype=torch.bfloat16, device="cuda", model_configs=[ ModelConfig(model_id="DiffSynth-Studio/Nexus-GenV2", origin_file_pattern="model*.safetensors"), ModelConfig(model_id="DiffSynth-Studio/Nexus-GenV2", origin_file_pattern="edit_decoder.bin"), ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="text_encoder/model.safetensors"), ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="text_encoder_2/"), ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="ae.safetensors"), ], nexus_gen_processor_config=ModelConfig(model_id="DiffSynth-Studio/Nexus-GenV2", origin_file_pattern="processor/"), ) dataset_snapshot_download(dataset_id="DiffSynth-Studio/examples_in_diffsynth", local_dir="./", allow_file_pattern=f"data/examples/nexusgen/cat.jpg") ref_image = Image.open("data/examples/nexusgen/cat.jpg").convert("RGB") prompt = "Add a crown." image = pipe( prompt=prompt, negative_prompt="", seed=42, cfg_scale=2.0, num_inference_steps=50, nexus_gen_reference_image=ref_image, height=512, width=512, ) image.save("cat_crown.jpg")