|
|
import torch |
|
|
from PIL import Image |
|
|
import librosa |
|
|
from diffsynth import VideoData, save_video_with_audio |
|
|
from diffsynth.pipelines.wan_video_new import WanVideoPipeline, ModelConfig, WanVideoUnit_S2V |
|
|
from modelscope import dataset_snapshot_download |
|
|
|
|
|
|
|
|
def speech_to_video( |
|
|
prompt, |
|
|
input_image, |
|
|
audio_path, |
|
|
negative_prompt="", |
|
|
num_clip=None, |
|
|
audio_sample_rate=16000, |
|
|
pose_video_path=None, |
|
|
infer_frames=80, |
|
|
height=448, |
|
|
width=832, |
|
|
num_inference_steps=40, |
|
|
fps=16, |
|
|
motion_frames=73, |
|
|
save_path=None, |
|
|
): |
|
|
|
|
|
input_audio, sample_rate = librosa.load(audio_path, sr=audio_sample_rate) |
|
|
|
|
|
pose_video = VideoData(pose_video_path, height=height, width=width) if pose_video_path is not None else None |
|
|
|
|
|
audio_embeds, pose_latents, num_repeat = WanVideoUnit_S2V.pre_calculate_audio_pose( |
|
|
pipe=pipe, |
|
|
input_audio=input_audio, |
|
|
audio_sample_rate=sample_rate, |
|
|
s2v_pose_video=pose_video, |
|
|
num_frames=infer_frames + 1, |
|
|
height=height, |
|
|
width=width, |
|
|
fps=fps, |
|
|
) |
|
|
num_repeat = min(num_repeat, num_clip) if num_clip is not None else num_repeat |
|
|
print(f"Generating {num_repeat} video clips...") |
|
|
motion_videos = [] |
|
|
video = [] |
|
|
for r in range(num_repeat): |
|
|
s2v_pose_latents = pose_latents[r] if pose_latents is not None else None |
|
|
current_clip = pipe( |
|
|
prompt=prompt, |
|
|
input_image=input_image, |
|
|
negative_prompt=negative_prompt, |
|
|
seed=0, |
|
|
num_frames=infer_frames + 1, |
|
|
height=height, |
|
|
width=width, |
|
|
audio_embeds=audio_embeds[r], |
|
|
s2v_pose_latents=s2v_pose_latents, |
|
|
motion_video=motion_videos, |
|
|
num_inference_steps=num_inference_steps, |
|
|
) |
|
|
current_clip = current_clip[-infer_frames:] |
|
|
if r == 0: |
|
|
current_clip = current_clip[3:] |
|
|
overlap_frames_num = min(motion_frames, len(current_clip)) |
|
|
motion_videos = motion_videos[overlap_frames_num:] + current_clip[-overlap_frames_num:] |
|
|
video.extend(current_clip) |
|
|
save_video_with_audio(video, save_path, audio_path, fps=16, quality=5) |
|
|
print(f"processed the {r+1}th clip of total {num_repeat} clips.") |
|
|
return video |
|
|
|
|
|
|
|
|
pipe = WanVideoPipeline.from_pretrained( |
|
|
torch_dtype=torch.bfloat16, |
|
|
device="cuda", |
|
|
model_configs=[ |
|
|
ModelConfig(model_id="Wan-AI/Wan2.2-S2V-14B", origin_file_pattern="diffusion_pytorch_model*.safetensors"), |
|
|
ModelConfig(model_id="Wan-AI/Wan2.2-S2V-14B", origin_file_pattern="models_t5_umt5-xxl-enc-bf16.pth"), |
|
|
ModelConfig(model_id="Wan-AI/Wan2.2-S2V-14B", origin_file_pattern="wav2vec2-large-xlsr-53-english/model.safetensors"), |
|
|
ModelConfig(model_id="Wan-AI/Wan2.2-S2V-14B", origin_file_pattern="Wan2.1_VAE.pth"), |
|
|
], |
|
|
audio_processor_config=ModelConfig(model_id="Wan-AI/Wan2.2-S2V-14B", origin_file_pattern="wav2vec2-large-xlsr-53-english/"), |
|
|
) |
|
|
|
|
|
dataset_snapshot_download( |
|
|
dataset_id="DiffSynth-Studio/example_video_dataset", |
|
|
local_dir="./data/example_video_dataset", |
|
|
allow_file_pattern=f"wans2v/*", |
|
|
) |
|
|
|
|
|
infer_frames = 80 |
|
|
height = 448 |
|
|
width = 832 |
|
|
|
|
|
prompt = "a person is singing" |
|
|
negative_prompt = "画面模糊,最差质量,画面模糊,细节模糊不清,情绪激动剧烈,手快速抖动,字幕,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走" |
|
|
input_image = Image.open("data/example_video_dataset/wans2v/pose.png").convert("RGB").resize((width, height)) |
|
|
|
|
|
video_with_audio = speech_to_video( |
|
|
prompt=prompt, |
|
|
input_image=input_image, |
|
|
audio_path='data/example_video_dataset/wans2v/sing.MP3', |
|
|
negative_prompt=negative_prompt, |
|
|
pose_video_path='data/example_video_dataset/wans2v/pose.mp4', |
|
|
save_path="video_with_audio_full.mp4", |
|
|
infer_frames=infer_frames, |
|
|
height=height, |
|
|
width=width, |
|
|
) |
|
|
|
|
|
video_with_audio_pose = speech_to_video( |
|
|
prompt=prompt, |
|
|
input_image=input_image, |
|
|
audio_path='data/example_video_dataset/wans2v/sing.MP3', |
|
|
negative_prompt=negative_prompt, |
|
|
pose_video_path='data/example_video_dataset/wans2v/pose.mp4', |
|
|
save_path="video_with_audio_pose_clip_2.mp4", |
|
|
num_clip=2 |
|
|
) |
|
|
|