| import torch | |
| from diffsynth.pipelines.flux_image_new import FluxImagePipeline, ModelConfig | |
| from diffsynth.controlnets.processors import Annotator | |
| import numpy as np | |
| from PIL import Image | |
| pipe = FluxImagePipeline.from_pretrained( | |
| torch_dtype=torch.bfloat16, | |
| device="cuda", | |
| model_configs=[ | |
| ModelConfig(model_id="ostris/Flex.2-preview", origin_file_pattern="Flex.2-preview.safetensors"), | |
| ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="text_encoder/model.safetensors"), | |
| ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="text_encoder_2/"), | |
| ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="ae.safetensors"), | |
| ], | |
| ) | |
| image = pipe( | |
| prompt="portrait of a beautiful Asian girl, long hair, red t-shirt, sunshine, beach", | |
| num_inference_steps=50, embedded_guidance=3.5, | |
| seed=0 | |
| ) | |
| image.save(f"image_1.jpg") | |
| mask = np.zeros((1024, 1024, 3), dtype=np.uint8) | |
| mask[200:400, 400:700] = 255 | |
| mask = Image.fromarray(mask) | |
| mask.save(f"image_mask.jpg") | |
| inpaint_image = image | |
| image = pipe( | |
| prompt="portrait of a beautiful Asian girl with sunglasses, long hair, red t-shirt, sunshine, beach", | |
| num_inference_steps=50, embedded_guidance=3.5, | |
| flex_inpaint_image=inpaint_image, flex_inpaint_mask=mask, | |
| seed=4 | |
| ) | |
| image.save(f"image_2_new.jpg") | |
| control_image = Annotator("canny")(image) | |
| control_image.save("image_control.jpg") | |
| image = pipe( | |
| prompt="portrait of a beautiful Asian girl with sunglasses, long hair, yellow t-shirt, sunshine, beach", | |
| num_inference_steps=50, embedded_guidance=3.5, | |
| flex_control_image=control_image, | |
| seed=4 | |
| ) | |
| image.save(f"image_3_new.jpg") | |