Gabor Cselle
commited on
Commit
·
ea56d2d
1
Parent(s):
99f802a
U gotta normalize. (+ cleanup)
Browse files- train_font_identifier.py +58 -90
train_font_identifier.py
CHANGED
|
@@ -3,6 +3,7 @@ import os
|
|
| 3 |
import time
|
| 4 |
import torch
|
| 5 |
import torch.optim as optim
|
|
|
|
| 6 |
from torch.optim import lr_scheduler
|
| 7 |
from torchvision import datasets, models, transforms
|
| 8 |
from tqdm import tqdm
|
|
@@ -10,113 +11,80 @@ from tqdm import tqdm
|
|
| 10 |
# Directory with organized font images
|
| 11 |
data_dir = './train_test_images'
|
| 12 |
|
| 13 |
-
#
|
| 14 |
-
data_transforms =
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
'test': transforms.Compose([
|
| 21 |
-
transforms.Resize((224, 224)), # Resize to the input size expected by the model
|
| 22 |
-
transforms.ToTensor(),
|
| 23 |
-
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
| 24 |
-
]),
|
| 25 |
-
}
|
| 26 |
-
|
| 27 |
|
| 28 |
# Create datasets
|
| 29 |
image_datasets = {
|
| 30 |
-
x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms
|
| 31 |
for x in ['train', 'test']
|
| 32 |
}
|
| 33 |
|
| 34 |
# Create dataloaders
|
| 35 |
dataloaders = {
|
| 36 |
-
'train': torch.utils.data.DataLoader(image_datasets['train'], batch_size=4),
|
| 37 |
-
'test': torch.utils.data.DataLoader(image_datasets['test'], batch_size=4)
|
| 38 |
}
|
| 39 |
|
| 40 |
# Define the model
|
| 41 |
model = models.resnet18(weights=models.ResNet18_Weights.DEFAULT)
|
| 42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
# Define the loss function
|
| 44 |
criterion = torch.nn.CrossEntropyLoss()
|
| 45 |
|
| 46 |
-
#
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
# Decay LR by a factor of 0.1 every 7 epochs
|
| 50 |
-
exp_lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1)
|
| 51 |
|
| 52 |
# Number of epochs to train for
|
| 53 |
num_epochs = 25
|
| 54 |
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
running_corrects += torch.sum(preds == labels.data)
|
| 96 |
-
if phase == 'train':
|
| 97 |
-
scheduler.step()
|
| 98 |
-
|
| 99 |
-
epoch_loss = running_loss / len(image_datasets[phase])
|
| 100 |
-
epoch_acc = running_corrects.double() / len(image_datasets[phase])
|
| 101 |
-
|
| 102 |
-
print('{} Loss: {:.4f} Acc: {:.4f}'.format(
|
| 103 |
-
phase, epoch_loss, epoch_acc))
|
| 104 |
-
|
| 105 |
-
# Deep copy the model
|
| 106 |
-
if phase == 'test' and epoch_acc > best_acc:
|
| 107 |
-
best_acc = epoch_acc
|
| 108 |
-
best_model_wts = copy.deepcopy(model.state_dict())
|
| 109 |
-
|
| 110 |
-
print()
|
| 111 |
-
|
| 112 |
-
time_elapsed = time.time() - since
|
| 113 |
-
print('Training complete in {:.0f}m {:.0f}s'.format(
|
| 114 |
-
time_elapsed // 60, time_elapsed % 60))
|
| 115 |
-
print('Best test Acc: {:4f}'.format(best_acc))
|
| 116 |
-
|
| 117 |
-
# Load best model weights
|
| 118 |
-
model.load_state_dict(best_model_wts)
|
| 119 |
-
return model
|
| 120 |
-
|
| 121 |
-
# Train the model
|
| 122 |
-
model = train_model(model, criterion, optimizer, exp_lr_scheduler, num_epochs=num_epochs)
|
|
|
|
| 3 |
import time
|
| 4 |
import torch
|
| 5 |
import torch.optim as optim
|
| 6 |
+
import torch.nn as nn
|
| 7 |
from torch.optim import lr_scheduler
|
| 8 |
from torchvision import datasets, models, transforms
|
| 9 |
from tqdm import tqdm
|
|
|
|
| 11 |
# Directory with organized font images
|
| 12 |
data_dir = './train_test_images'
|
| 13 |
|
| 14 |
+
# Transformations for the image data
|
| 15 |
+
data_transforms = transforms.Compose([
|
| 16 |
+
s transforms.Grayscale(num_output_channels=3), # Convert images to grayscale with 3 channels
|
| 17 |
+
transforms.Resize((224, 224)), # Resize images to the expected input size of the model
|
| 18 |
+
transforms.ToTensor(), # Convert images to PyTorch tensors
|
| 19 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # Normalize with ImageNet stats
|
| 20 |
+
])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
# Create datasets
|
| 23 |
image_datasets = {
|
| 24 |
+
x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms)
|
| 25 |
for x in ['train', 'test']
|
| 26 |
}
|
| 27 |
|
| 28 |
# Create dataloaders
|
| 29 |
dataloaders = {
|
| 30 |
+
'train': torch.utils.data.DataLoader(image_datasets['train'], batch_size=4, shuffle=True),
|
| 31 |
+
'test': torch.utils.data.DataLoader(image_datasets['test'], batch_size=4, shuffle=True)
|
| 32 |
}
|
| 33 |
|
| 34 |
# Define the model
|
| 35 |
model = models.resnet18(weights=models.ResNet18_Weights.DEFAULT)
|
| 36 |
|
| 37 |
+
# Modify the last fully connected layer to match the number of font classes you have
|
| 38 |
+
num_classes = len(image_datasets['train'].classes)
|
| 39 |
+
model.fc = nn.Linear(model.fc.in_features, num_classes)
|
| 40 |
+
|
| 41 |
# Define the loss function
|
| 42 |
criterion = torch.nn.CrossEntropyLoss()
|
| 43 |
|
| 44 |
+
# Define loss function and optimizer
|
| 45 |
+
criterion = nn.CrossEntropyLoss()
|
| 46 |
+
optimizer = optim.Adam(model.parameters())
|
|
|
|
|
|
|
| 47 |
|
| 48 |
# Number of epochs to train for
|
| 49 |
num_epochs = 25
|
| 50 |
|
| 51 |
+
# Function to perform a training step with progress bar
|
| 52 |
+
def train_step(model, data_loader, criterion, optimizer):
|
| 53 |
+
model.train()
|
| 54 |
+
total_loss = 0
|
| 55 |
+
progress_bar = tqdm(data_loader, desc='Training', leave=True)
|
| 56 |
+
for inputs, targets in progress_bar:
|
| 57 |
+
outputs = model(inputs)
|
| 58 |
+
loss = criterion(outputs, targets)
|
| 59 |
+
optimizer.zero_grad()
|
| 60 |
+
loss.backward()
|
| 61 |
+
optimizer.step()
|
| 62 |
+
total_loss += loss.item()
|
| 63 |
+
progress_bar.set_postfix(loss=loss.item())
|
| 64 |
+
progress_bar.close()
|
| 65 |
+
return total_loss / len(data_loader)
|
| 66 |
+
|
| 67 |
+
# Function to perform a validation step with progress bar
|
| 68 |
+
def validate(model, data_loader, criterion):
|
| 69 |
+
model.eval()
|
| 70 |
+
total_loss = 0
|
| 71 |
+
correct = 0
|
| 72 |
+
progress_bar = tqdm(data_loader, desc='Validation', leave=False)
|
| 73 |
+
with torch.no_grad():
|
| 74 |
+
for inputs, targets in progress_bar:
|
| 75 |
+
outputs = model(inputs)
|
| 76 |
+
loss = criterion(outputs, targets)
|
| 77 |
+
total_loss += loss.item()
|
| 78 |
+
_, predicted = torch.max(outputs, 1)
|
| 79 |
+
correct += (predicted == targets).sum().item()
|
| 80 |
+
progress_bar.set_postfix(loss=loss.item())
|
| 81 |
+
progress_bar.close()
|
| 82 |
+
return total_loss / len(data_loader), correct / len(data_loader.dataset)
|
| 83 |
+
|
| 84 |
+
# Training loop with progress bar for epochs
|
| 85 |
+
num_epochs = 25 # Replace with the number of epochs you'd like to train for
|
| 86 |
+
for epoch in range(num_epochs):
|
| 87 |
+
print(f"Epoch {epoch+1}/{num_epochs}")
|
| 88 |
+
train_loss = train_step(model, dataloaders["train"], criterion, optimizer)
|
| 89 |
+
val_loss, val_accuracy = validate(model, dataloaders["test"], criterion)
|
| 90 |
+
print(f"Train Loss: {train_loss:.4f}, Val Loss: {val_loss:.4f}, Val Accuracy: {val_accuracy:.4f}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|