Datasets:
Update README.md
Browse files
README.md
CHANGED
|
@@ -49,14 +49,6 @@ Where:
|
|
| 49 |
- β
Rewards **high rankings** (rank 1 is worth more than rank 25)
|
| 50 |
- β
Balances consistency with peak performance
|
| 51 |
|
| 52 |
-
### Example Calculation
|
| 53 |
-
|
| 54 |
-
Developer appears 3 times:
|
| 55 |
-
- Day 1: Rank 1 β 25 points
|
| 56 |
-
- Day 2: Rank 5 β 21 points
|
| 57 |
-
- Day 3: Rank 10 β 16 points
|
| 58 |
-
- **Total Score: 62**
|
| 59 |
-
|
| 60 |
## π Dataset Structure
|
| 61 |
|
| 62 |
### Columns
|
|
@@ -72,15 +64,6 @@ Developer appears 3 times:
|
|
| 72 |
| `median_rank` | integer | Median rank |
|
| 73 |
| `popular_repos` | string | Top repositories (comma-separated) |
|
| 74 |
|
| 75 |
-
### Sample Data
|
| 76 |
-
|
| 77 |
-
```csv
|
| 78 |
-
year,rank,name,times_trended,best_rank,avg_rank,median_rank,popular_repos
|
| 79 |
-
2025,1,comfyanonymous,18,1,11.72,12,comfyanonymous/ComfyUI
|
| 80 |
-
2025,2,emilk,12,1,8.17,7,emilk/egui
|
| 81 |
-
2025,3,sxyazi,12,1,9.17,8,sxyazi/yazi
|
| 82 |
-
```
|
| 83 |
-
|
| 84 |
## π Key Insights
|
| 85 |
|
| 86 |
### 1. Year Winners (Highest Score Each Year)
|
|
@@ -116,25 +99,7 @@ year,rank,name,times_trended,best_rank,avg_rank,median_rank,popular_repos
|
|
| 116 |
| 9 | PySimpleGUI | 3,059 | 185 | 2019-2023 |
|
| 117 |
| 10 | arvidn | 2,737 | 164 | 2017-2022 |
|
| 118 |
|
| 119 |
-
### 3.
|
| 120 |
-
|
| 121 |
-
**7-Year Streaks:**
|
| 122 |
-
1. **bradfitz** (2025-2018) - Go team, ex-Google engineer
|
| 123 |
-
2. **hustcc** (2025-2016) - Open source tool creator
|
| 124 |
-
3. **gaearon** (2024-2015) - React core team (Dan Abramov)
|
| 125 |
-
4. **sindresorhus** (2021-2015) - Most prolific npm author
|
| 126 |
-
|
| 127 |
-
**Distribution:**
|
| 128 |
-
- 39.5% of developers (1,881 out of 4,763) appear in multiple years
|
| 129 |
-
- 7 years: 4 developers
|
| 130 |
-
- 6 years: 54 developers (including hrydgard, rasbt, hathach)
|
| 131 |
-
- 5 years: 110 developers
|
| 132 |
-
- 4 years: 204 developers
|
| 133 |
-
- 3 years: 507 developers
|
| 134 |
-
- 2 years: 1,002 developers
|
| 135 |
-
- 1 year only: 2,882 developers
|
| 136 |
-
|
| 137 |
-
### 4. Trend Shifts Over Time
|
| 138 |
|
| 139 |
**2015-2017: Organization Era**
|
| 140 |
- Big tech dominated: Facebook, Google, Microsoft
|
|
@@ -160,125 +125,8 @@ year,rank,name,times_trended,best_rank,avg_rank,median_rank,popular_repos
|
|
| 160 |
- **Organization Decline**: Big tech companies dropped from top spots after 2019
|
| 161 |
- **Ecosystem Impact**: Most top developers maintain influential open-source libraries
|
| 162 |
|
| 163 |
-
## π Use Cases
|
| 164 |
-
|
| 165 |
-
This dataset is valuable for:
|
| 166 |
-
|
| 167 |
-
1. **Trend Analysis**: Understanding GitHub ecosystem evolution over 11 years
|
| 168 |
-
2. **Developer Influence Research**: Identifying thought leaders and impact patterns
|
| 169 |
-
3. **Career Analysis**: Learning from consistently successful open-source developers
|
| 170 |
-
4. **Open Source Strategy**: Analyzing what makes developers trend repeatedly
|
| 171 |
-
5. **Historical Technology Shifts**: Tracking move from corporate to individual-led innovation
|
| 172 |
-
6. **Visualization Projects**: Creating timelines, heatmaps, and ranking charts
|
| 173 |
-
7. **Academic Research**: Studying social coding platforms and developer communities
|
| 174 |
-
8. **Recruitment Intelligence**: Identifying top talent based on community recognition
|
| 175 |
-
|
| 176 |
-
## π Data Quality
|
| 177 |
-
|
| 178 |
-
- β
**Complete**: All 41,841 raw entries processed from Wayback Machine snapshots
|
| 179 |
-
- β
**Consistent**: Single weighted scoring methodology across all years
|
| 180 |
-
- β
**Validated**: Manual checks performed on top 100 developers per year
|
| 181 |
-
- β
**Temporal Coverage**: 11 years of continuous data (2015-2025)
|
| 182 |
-
- βΉοΈ **Popular Repos**: Limited to top 3 per developer per year
|
| 183 |
-
- βΉοΈ **Coverage**: 86.4% of raw entries include repository information
|
| 184 |
-
|
| 185 |
-
## π Quick Start
|
| 186 |
-
|
| 187 |
-
### Load with Hugging Face Datasets
|
| 188 |
-
|
| 189 |
-
```python
|
| 190 |
-
from datasets import load_dataset
|
| 191 |
-
|
| 192 |
-
# Load the dataset
|
| 193 |
-
dataset = load_dataset("ronantakizawa/github-top-developers")
|
| 194 |
-
|
| 195 |
-
# Get 2024 top 10
|
| 196 |
-
df = dataset['train'].to_pandas()
|
| 197 |
-
top_2024 = df[df['year'] == 2024].head(10)
|
| 198 |
-
print(top_2024)
|
| 199 |
-
```
|
| 200 |
-
|
| 201 |
-
### Load with Pandas
|
| 202 |
-
|
| 203 |
-
```python
|
| 204 |
-
import pandas as pd
|
| 205 |
-
|
| 206 |
-
url = "https://huggingface.co/datasets/ronantakizawa/github-top-developers/resolve/main/github-top-developers-by-year.csv"
|
| 207 |
-
df = pd.read_csv(url)
|
| 208 |
-
|
| 209 |
-
# Analyze multi-year developers
|
| 210 |
-
multi_year = df.groupby('name').filter(lambda x: len(x) > 1)
|
| 211 |
-
print(f"Developers in multiple years: {len(multi_year['name'].unique())}")
|
| 212 |
-
```
|
| 213 |
-
|
| 214 |
-
### Example Analyses
|
| 215 |
-
|
| 216 |
-
```python
|
| 217 |
-
# Find developers who appeared every year from 2020-2025
|
| 218 |
-
recent_years = df[df['year'].isin([2020, 2021, 2022, 2023, 2024, 2025])]
|
| 219 |
-
consistent = recent_years.groupby('name').filter(lambda x: len(x) == 6)
|
| 220 |
-
|
| 221 |
-
# Compare organization vs individual era
|
| 222 |
-
early_era = df[df['year'] <= 2017] # Organization era
|
| 223 |
-
recent_era = df[df['year'] >= 2020] # Individual era
|
| 224 |
-
|
| 225 |
-
print(f"Early era average appearances: {early_era['times_trended'].mean():.1f}")
|
| 226 |
-
print(f"Recent era average appearances: {recent_era['times_trended'].mean():.1f}")
|
| 227 |
-
```
|
| 228 |
-
|
| 229 |
-
## π Related Datasets
|
| 230 |
-
|
| 231 |
-
- **GitHub Trending Repositories** (raw data - 41,841 entries)
|
| 232 |
-
- **GitHub Trending Developers** (source data for this dataset)
|
| 233 |
-
- **TikTok Trending Hashtags** (2022-2025) - by same author
|
| 234 |
-
- **Twitter Trending Hashtags** (2020-2025) - by same author
|
| 235 |
-
|
| 236 |
-
## π Citation
|
| 237 |
-
|
| 238 |
-
If you use this dataset in your research or project, please cite:
|
| 239 |
-
|
| 240 |
-
```bibtex
|
| 241 |
-
@dataset{github_top_developers_2025,
|
| 242 |
-
title={GitHub Top Developers by Year (2015-2025)},
|
| 243 |
-
author={Ronan Takizawa},
|
| 244 |
-
year={2025},
|
| 245 |
-
publisher={Hugging Face},
|
| 246 |
-
howpublished={\url{https://huggingface.co/datasets/ronantakizawa/github-top-developers}},
|
| 247 |
-
note={Derived from Wayback Machine snapshots of GitHub trending developers, 41,841 raw data points}
|
| 248 |
-
}
|
| 249 |
-
```
|
| 250 |
-
|
| 251 |
-
## π€ Contributing
|
| 252 |
-
|
| 253 |
-
Found an issue? Suggestions for improvement?
|
| 254 |
-
- Open an issue on the [GitHub repository](https://github.com/ronantakizawa)
|
| 255 |
-
- Submit feedback through Hugging Face discussions
|
| 256 |
-
|
| 257 |
-
## β οΈ Disclaimer
|
| 258 |
-
|
| 259 |
-
This dataset is derived from public Wayback Machine snapshots of GitHub's trending developers page. It represents historical trending patterns and should not be considered:
|
| 260 |
-
|
| 261 |
-
- A comprehensive measure of developer skill or impact
|
| 262 |
-
- Official GitHub endorsement or ranking
|
| 263 |
-
- A reflection of overall contribution quality (only trending visibility)
|
| 264 |
-
- Complete representation of all influential developers
|
| 265 |
-
|
| 266 |
-
GitHub's trending algorithm and its criteria are not publicly documented. This dataset captures what was historically visible on the trending page.
|
| 267 |
-
|
| 268 |
## π License
|
| 269 |
|
| 270 |
MIT License - Free to use with attribution
|
| 271 |
|
| 272 |
-
---
|
| 273 |
-
|
| 274 |
-
**Dataset Details:**
|
| 275 |
-
- **Created**: December 1, 2025
|
| 276 |
-
- **Coverage**: May 6, 2015 β September 28, 2025
|
| 277 |
-
- **Last Updated**: December 1, 2025
|
| 278 |
-
- **Version**: 1.0
|
| 279 |
-
- **Maintainer**: Ronan Takizawa
|
| 280 |
-
- **Contact**: [Hugging Face Profile](https://huggingface.co/ronantakizawa)
|
| 281 |
-
|
| 282 |
-
---
|
| 283 |
|
| 284 |
-
*This is part of a series of trending data datasets capturing temporal patterns across different platforms (GitHub, TikTok, Twitter, HuggingFace Papers, Yahoo Finance).*
|
|
|
|
| 49 |
- β
Rewards **high rankings** (rank 1 is worth more than rank 25)
|
| 50 |
- β
Balances consistency with peak performance
|
| 51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
## π Dataset Structure
|
| 53 |
|
| 54 |
### Columns
|
|
|
|
| 64 |
| `median_rank` | integer | Median rank |
|
| 65 |
| `popular_repos` | string | Top repositories (comma-separated) |
|
| 66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
## π Key Insights
|
| 68 |
|
| 69 |
### 1. Year Winners (Highest Score Each Year)
|
|
|
|
| 99 |
| 9 | PySimpleGUI | 3,059 | 185 | 2019-2023 |
|
| 100 |
| 10 | arvidn | 2,737 | 164 | 2017-2022 |
|
| 101 |
|
| 102 |
+
### 3. Trend Shifts Over Time
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
|
| 104 |
**2015-2017: Organization Era**
|
| 105 |
- Big tech dominated: Facebook, Google, Microsoft
|
|
|
|
| 125 |
- **Organization Decline**: Big tech companies dropped from top spots after 2019
|
| 126 |
- **Ecosystem Impact**: Most top developers maintain influential open-source libraries
|
| 127 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
## π License
|
| 129 |
|
| 130 |
MIT License - Free to use with attribution
|
| 131 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
|
|
|