ronantakizawa commited on
Commit
fc27ef5
Β·
verified Β·
1 Parent(s): 84ea06c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +1 -153
README.md CHANGED
@@ -49,14 +49,6 @@ Where:
49
  - βœ… Rewards **high rankings** (rank 1 is worth more than rank 25)
50
  - βœ… Balances consistency with peak performance
51
 
52
- ### Example Calculation
53
-
54
- Developer appears 3 times:
55
- - Day 1: Rank 1 β†’ 25 points
56
- - Day 2: Rank 5 β†’ 21 points
57
- - Day 3: Rank 10 β†’ 16 points
58
- - **Total Score: 62**
59
-
60
  ## πŸ“‹ Dataset Structure
61
 
62
  ### Columns
@@ -72,15 +64,6 @@ Developer appears 3 times:
72
  | `median_rank` | integer | Median rank |
73
  | `popular_repos` | string | Top repositories (comma-separated) |
74
 
75
- ### Sample Data
76
-
77
- ```csv
78
- year,rank,name,times_trended,best_rank,avg_rank,median_rank,popular_repos
79
- 2025,1,comfyanonymous,18,1,11.72,12,comfyanonymous/ComfyUI
80
- 2025,2,emilk,12,1,8.17,7,emilk/egui
81
- 2025,3,sxyazi,12,1,9.17,8,sxyazi/yazi
82
- ```
83
-
84
  ## 🌟 Key Insights
85
 
86
  ### 1. Year Winners (Highest Score Each Year)
@@ -116,25 +99,7 @@ year,rank,name,times_trended,best_rank,avg_rank,median_rank,popular_repos
116
  | 9 | PySimpleGUI | 3,059 | 185 | 2019-2023 |
117
  | 10 | arvidn | 2,737 | 164 | 2017-2022 |
118
 
119
- ### 3. Most Consistent Developers (Multi-Year Appearances)
120
-
121
- **7-Year Streaks:**
122
- 1. **bradfitz** (2025-2018) - Go team, ex-Google engineer
123
- 2. **hustcc** (2025-2016) - Open source tool creator
124
- 3. **gaearon** (2024-2015) - React core team (Dan Abramov)
125
- 4. **sindresorhus** (2021-2015) - Most prolific npm author
126
-
127
- **Distribution:**
128
- - 39.5% of developers (1,881 out of 4,763) appear in multiple years
129
- - 7 years: 4 developers
130
- - 6 years: 54 developers (including hrydgard, rasbt, hathach)
131
- - 5 years: 110 developers
132
- - 4 years: 204 developers
133
- - 3 years: 507 developers
134
- - 2 years: 1,002 developers
135
- - 1 year only: 2,882 developers
136
-
137
- ### 4. Trend Shifts Over Time
138
 
139
  **2015-2017: Organization Era**
140
  - Big tech dominated: Facebook, Google, Microsoft
@@ -160,125 +125,8 @@ year,rank,name,times_trended,best_rank,avg_rank,median_rank,popular_repos
160
  - **Organization Decline**: Big tech companies dropped from top spots after 2019
161
  - **Ecosystem Impact**: Most top developers maintain influential open-source libraries
162
 
163
- ## πŸ” Use Cases
164
-
165
- This dataset is valuable for:
166
-
167
- 1. **Trend Analysis**: Understanding GitHub ecosystem evolution over 11 years
168
- 2. **Developer Influence Research**: Identifying thought leaders and impact patterns
169
- 3. **Career Analysis**: Learning from consistently successful open-source developers
170
- 4. **Open Source Strategy**: Analyzing what makes developers trend repeatedly
171
- 5. **Historical Technology Shifts**: Tracking move from corporate to individual-led innovation
172
- 6. **Visualization Projects**: Creating timelines, heatmaps, and ranking charts
173
- 7. **Academic Research**: Studying social coding platforms and developer communities
174
- 8. **Recruitment Intelligence**: Identifying top talent based on community recognition
175
-
176
- ## πŸ“ˆ Data Quality
177
-
178
- - βœ… **Complete**: All 41,841 raw entries processed from Wayback Machine snapshots
179
- - βœ… **Consistent**: Single weighted scoring methodology across all years
180
- - βœ… **Validated**: Manual checks performed on top 100 developers per year
181
- - βœ… **Temporal Coverage**: 11 years of continuous data (2015-2025)
182
- - ℹ️ **Popular Repos**: Limited to top 3 per developer per year
183
- - ℹ️ **Coverage**: 86.4% of raw entries include repository information
184
-
185
- ## πŸš€ Quick Start
186
-
187
- ### Load with Hugging Face Datasets
188
-
189
- ```python
190
- from datasets import load_dataset
191
-
192
- # Load the dataset
193
- dataset = load_dataset("ronantakizawa/github-top-developers")
194
-
195
- # Get 2024 top 10
196
- df = dataset['train'].to_pandas()
197
- top_2024 = df[df['year'] == 2024].head(10)
198
- print(top_2024)
199
- ```
200
-
201
- ### Load with Pandas
202
-
203
- ```python
204
- import pandas as pd
205
-
206
- url = "https://huggingface.co/datasets/ronantakizawa/github-top-developers/resolve/main/github-top-developers-by-year.csv"
207
- df = pd.read_csv(url)
208
-
209
- # Analyze multi-year developers
210
- multi_year = df.groupby('name').filter(lambda x: len(x) > 1)
211
- print(f"Developers in multiple years: {len(multi_year['name'].unique())}")
212
- ```
213
-
214
- ### Example Analyses
215
-
216
- ```python
217
- # Find developers who appeared every year from 2020-2025
218
- recent_years = df[df['year'].isin([2020, 2021, 2022, 2023, 2024, 2025])]
219
- consistent = recent_years.groupby('name').filter(lambda x: len(x) == 6)
220
-
221
- # Compare organization vs individual era
222
- early_era = df[df['year'] <= 2017] # Organization era
223
- recent_era = df[df['year'] >= 2020] # Individual era
224
-
225
- print(f"Early era average appearances: {early_era['times_trended'].mean():.1f}")
226
- print(f"Recent era average appearances: {recent_era['times_trended'].mean():.1f}")
227
- ```
228
-
229
- ## πŸ”— Related Datasets
230
-
231
- - **GitHub Trending Repositories** (raw data - 41,841 entries)
232
- - **GitHub Trending Developers** (source data for this dataset)
233
- - **TikTok Trending Hashtags** (2022-2025) - by same author
234
- - **Twitter Trending Hashtags** (2020-2025) - by same author
235
-
236
- ## πŸ“ Citation
237
-
238
- If you use this dataset in your research or project, please cite:
239
-
240
- ```bibtex
241
- @dataset{github_top_developers_2025,
242
- title={GitHub Top Developers by Year (2015-2025)},
243
- author={Ronan Takizawa},
244
- year={2025},
245
- publisher={Hugging Face},
246
- howpublished={\url{https://huggingface.co/datasets/ronantakizawa/github-top-developers}},
247
- note={Derived from Wayback Machine snapshots of GitHub trending developers, 41,841 raw data points}
248
- }
249
- ```
250
-
251
- ## 🀝 Contributing
252
-
253
- Found an issue? Suggestions for improvement?
254
- - Open an issue on the [GitHub repository](https://github.com/ronantakizawa)
255
- - Submit feedback through Hugging Face discussions
256
-
257
- ## ⚠️ Disclaimer
258
-
259
- This dataset is derived from public Wayback Machine snapshots of GitHub's trending developers page. It represents historical trending patterns and should not be considered:
260
-
261
- - A comprehensive measure of developer skill or impact
262
- - Official GitHub endorsement or ranking
263
- - A reflection of overall contribution quality (only trending visibility)
264
- - Complete representation of all influential developers
265
-
266
- GitHub's trending algorithm and its criteria are not publicly documented. This dataset captures what was historically visible on the trending page.
267
-
268
  ## πŸ“„ License
269
 
270
  MIT License - Free to use with attribution
271
 
272
- ---
273
-
274
- **Dataset Details:**
275
- - **Created**: December 1, 2025
276
- - **Coverage**: May 6, 2015 β†’ September 28, 2025
277
- - **Last Updated**: December 1, 2025
278
- - **Version**: 1.0
279
- - **Maintainer**: Ronan Takizawa
280
- - **Contact**: [Hugging Face Profile](https://huggingface.co/ronantakizawa)
281
-
282
- ---
283
 
284
- *This is part of a series of trending data datasets capturing temporal patterns across different platforms (GitHub, TikTok, Twitter, HuggingFace Papers, Yahoo Finance).*
 
49
  - βœ… Rewards **high rankings** (rank 1 is worth more than rank 25)
50
  - βœ… Balances consistency with peak performance
51
 
 
 
 
 
 
 
 
 
52
  ## πŸ“‹ Dataset Structure
53
 
54
  ### Columns
 
64
  | `median_rank` | integer | Median rank |
65
  | `popular_repos` | string | Top repositories (comma-separated) |
66
 
 
 
 
 
 
 
 
 
 
67
  ## 🌟 Key Insights
68
 
69
  ### 1. Year Winners (Highest Score Each Year)
 
99
  | 9 | PySimpleGUI | 3,059 | 185 | 2019-2023 |
100
  | 10 | arvidn | 2,737 | 164 | 2017-2022 |
101
 
102
+ ### 3. Trend Shifts Over Time
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
103
 
104
  **2015-2017: Organization Era**
105
  - Big tech dominated: Facebook, Google, Microsoft
 
125
  - **Organization Decline**: Big tech companies dropped from top spots after 2019
126
  - **Ecosystem Impact**: Most top developers maintain influential open-source libraries
127
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
128
  ## πŸ“„ License
129
 
130
  MIT License - Free to use with attribution
131
 
 
 
 
 
 
 
 
 
 
 
 
132