```CODE: # Use a pipeline as a high-level helper from transformers import pipeline pipe = pipeline("text-generation", model="EssentialAI/rnj-1") messages = [ {"role": "user", "content": "Who are you?"}, ] pipe(messages) ``` ERROR: Traceback (most recent call last): File "/tmp/EssentialAI_rnj-1_06H328I.py", line 26, in pipe = pipeline("text-generation", model="EssentialAI/rnj-1") File "/tmp/.cache/uv/environments-v2/06a66837d768c28b/lib/python3.13/site-packages/transformers/pipelines/__init__.py", line 1229, in pipeline return pipeline_class(model=model, framework=framework, task=task, **kwargs) File "/tmp/.cache/uv/environments-v2/06a66837d768c28b/lib/python3.13/site-packages/transformers/pipelines/text_generation.py", line 121, in __init__ super().__init__(*args, **kwargs) ~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^ File "/tmp/.cache/uv/environments-v2/06a66837d768c28b/lib/python3.13/site-packages/transformers/pipelines/base.py", line 1044, in __init__ self.model.to(self.device) ~~~~~~~~~~~~~^^^^^^^^^^^^^ File "/tmp/.cache/uv/environments-v2/06a66837d768c28b/lib/python3.13/site-packages/transformers/modeling_utils.py", line 4343, in to return super().to(*args, **kwargs) ~~~~~~~~~~^^^^^^^^^^^^^^^^^ File "/tmp/.cache/uv/environments-v2/06a66837d768c28b/lib/python3.13/site-packages/torch/nn/modules/module.py", line 1371, in to return self._apply(convert) ~~~~~~~~~~~^^^^^^^^^ File "/tmp/.cache/uv/environments-v2/06a66837d768c28b/lib/python3.13/site-packages/torch/nn/modules/module.py", line 930, in _apply module._apply(fn) ~~~~~~~~~~~~~^^^^ File "/tmp/.cache/uv/environments-v2/06a66837d768c28b/lib/python3.13/site-packages/torch/nn/modules/module.py", line 930, in _apply module._apply(fn) ~~~~~~~~~~~~~^^^^ File "/tmp/.cache/uv/environments-v2/06a66837d768c28b/lib/python3.13/site-packages/torch/nn/modules/module.py", line 930, in _apply module._apply(fn) ~~~~~~~~~~~~~^^^^ [Previous line repeated 2 more times] File "/tmp/.cache/uv/environments-v2/06a66837d768c28b/lib/python3.13/site-packages/torch/nn/modules/module.py", line 957, in _apply param_applied = fn(param) File "/tmp/.cache/uv/environments-v2/06a66837d768c28b/lib/python3.13/site-packages/torch/nn/modules/module.py", line 1357, in convert return t.to( ~~~~^ device, ^^^^^^^ dtype if t.is_floating_point() or t.is_complex() else None, ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ non_blocking, ^^^^^^^^^^^^^ ) ^ torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 64.00 MiB. GPU 0 has a total capacity of 22.30 GiB of which 62.69 MiB is free. Process 26258 has 22.23 GiB memory in use. Of the allocated memory 21.99 GiB is allocated by PyTorch, and 617.50 KiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)