ariG23498 HF Staff commited on
Commit
11e41e3
·
verified ·
1 Parent(s): 0c9be7c

Upload EssentialAI_rnj-1_0.txt with huggingface_hub

Browse files
Files changed (1) hide show
  1. EssentialAI_rnj-1_0.txt +2 -2
EssentialAI_rnj-1_0.txt CHANGED
@@ -11,7 +11,7 @@ pipe(messages)
11
 
12
  ERROR:
13
  Traceback (most recent call last):
14
- File "/tmp/EssentialAI_rnj-1_0NTacVg.py", line 26, in <module>
15
  pipe = pipeline("text-generation", model="EssentialAI/rnj-1")
16
  File "/tmp/.cache/uv/environments-v2/06a66837d768c28b/lib/python3.13/site-packages/transformers/pipelines/__init__.py", line 1229, in pipeline
17
  return pipeline_class(model=model, framework=framework, task=task, **kwargs)
@@ -50,4 +50,4 @@ Traceback (most recent call last):
50
  ^^^^^^^^^^^^^
51
  )
52
  ^
53
- torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 64.00 MiB. GPU 0 has a total capacity of 22.30 GiB of which 62.69 MiB is free. Process 26014 has 22.23 GiB memory in use. Of the allocated memory 21.99 GiB is allocated by PyTorch, and 617.50 KiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
 
11
 
12
  ERROR:
13
  Traceback (most recent call last):
14
+ File "/tmp/EssentialAI_rnj-1_0ti9icj.py", line 26, in <module>
15
  pipe = pipeline("text-generation", model="EssentialAI/rnj-1")
16
  File "/tmp/.cache/uv/environments-v2/06a66837d768c28b/lib/python3.13/site-packages/transformers/pipelines/__init__.py", line 1229, in pipeline
17
  return pipeline_class(model=model, framework=framework, task=task, **kwargs)
 
50
  ^^^^^^^^^^^^^
51
  )
52
  ^
53
+ torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 64.00 MiB. GPU 0 has a total capacity of 22.30 GiB of which 62.69 MiB is free. Process 1860649 has 22.23 GiB memory in use. Of the allocated memory 21.99 GiB is allocated by PyTorch, and 617.50 KiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)