Upload AIDC-AI_Ovis-Image-7B_0.txt with huggingface_hub
Browse files
AIDC-AI_Ovis-Image-7B_0.txt
CHANGED
|
@@ -11,7 +11,7 @@ image = pipe(prompt).images[0]
|
|
| 11 |
|
| 12 |
ERROR:
|
| 13 |
Traceback (most recent call last):
|
| 14 |
-
File "/tmp/AIDC-AI_Ovis-Image-
|
| 15 |
pipe = DiffusionPipeline.from_pretrained("AIDC-AI/Ovis-Image-7B", dtype=torch.bfloat16, device_map="cuda")
|
| 16 |
File "/tmp/.cache/uv/environments-v2/4c88b0d2a4015e5b/lib/python3.13/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn
|
| 17 |
return fn(*args, **kwargs)
|
|
@@ -53,4 +53,4 @@ Traceback (most recent call last):
|
|
| 53 |
~~~~~~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 54 |
File "/tmp/.cache/uv/environments-v2/4c88b0d2a4015e5b/lib/python3.13/site-packages/accelerate/utils/modeling.py", line 343, in set_module_tensor_to_device
|
| 55 |
new_value = value.to(device, non_blocking=non_blocking)
|
| 56 |
-
torch.OutOfMemoryError: CUDA out of memory. Tried to allocate
|
|
|
|
| 11 |
|
| 12 |
ERROR:
|
| 13 |
Traceback (most recent call last):
|
| 14 |
+
File "/tmp/AIDC-AI_Ovis-Image-7B_0qofMjN.py", line 27, in <module>
|
| 15 |
pipe = DiffusionPipeline.from_pretrained("AIDC-AI/Ovis-Image-7B", dtype=torch.bfloat16, device_map="cuda")
|
| 16 |
File "/tmp/.cache/uv/environments-v2/4c88b0d2a4015e5b/lib/python3.13/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn
|
| 17 |
return fn(*args, **kwargs)
|
|
|
|
| 53 |
~~~~~~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 54 |
File "/tmp/.cache/uv/environments-v2/4c88b0d2a4015e5b/lib/python3.13/site-packages/accelerate/utils/modeling.py", line 343, in set_module_tensor_to_device
|
| 55 |
new_value = value.to(device, non_blocking=non_blocking)
|
| 56 |
+
torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 36.00 MiB. GPU 0 has a total capacity of 22.03 GiB of which 9.12 MiB is free. Including non-PyTorch memory, this process has 22.02 GiB memory in use. Of the allocated memory 21.79 GiB is allocated by PyTorch, and 44.53 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
|