Datasets:
init
Browse files
coco.py
ADDED
|
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2022 Lance Developers
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
"""COCO: Microsoft COCO Dataset.
|
| 16 |
+
|
| 17 |
+
https://cocodataset.org/#home
|
| 18 |
+
"""
|
| 19 |
+
|
| 20 |
+
import os
|
| 21 |
+
from typing import List
|
| 22 |
+
|
| 23 |
+
import datasets
|
| 24 |
+
import lance
|
| 25 |
+
import pyarrow as pa
|
| 26 |
+
import pyarrow.compute as pc
|
| 27 |
+
|
| 28 |
+
_CLASS_MAP = {
|
| 29 |
+
1: "person",
|
| 30 |
+
2: "bicycle",
|
| 31 |
+
3: "car",
|
| 32 |
+
4: "motorcycle",
|
| 33 |
+
5: "airplane",
|
| 34 |
+
6: "bus",
|
| 35 |
+
7: "train",
|
| 36 |
+
8: "truck",
|
| 37 |
+
9: "boat",
|
| 38 |
+
10: "traffic light",
|
| 39 |
+
11: "fire hydrant",
|
| 40 |
+
13: "stop sign",
|
| 41 |
+
14: "parking meter",
|
| 42 |
+
15: "bench",
|
| 43 |
+
16: "bird",
|
| 44 |
+
17: "cat",
|
| 45 |
+
18: "dog",
|
| 46 |
+
19: "horse",
|
| 47 |
+
20: "sheep",
|
| 48 |
+
21: "cow",
|
| 49 |
+
22: "elephant",
|
| 50 |
+
23: "bear",
|
| 51 |
+
24: "zebra",
|
| 52 |
+
25: "giraffe",
|
| 53 |
+
27: "backpack",
|
| 54 |
+
28: "umbrella",
|
| 55 |
+
31: "handbag",
|
| 56 |
+
32: "tie",
|
| 57 |
+
33: "suitcase",
|
| 58 |
+
34: "frisbee",
|
| 59 |
+
35: "skis",
|
| 60 |
+
36: "snowboard",
|
| 61 |
+
37: "sports ball",
|
| 62 |
+
38: "kite",
|
| 63 |
+
39: "baseball bat",
|
| 64 |
+
40: "baseball glove",
|
| 65 |
+
41: "skateboard",
|
| 66 |
+
42: "surfboard",
|
| 67 |
+
43: "tennis racket",
|
| 68 |
+
44: "bottle",
|
| 69 |
+
46: "wine glass",
|
| 70 |
+
47: "cup",
|
| 71 |
+
48: "fork",
|
| 72 |
+
49: "knife",
|
| 73 |
+
50: "spoon",
|
| 74 |
+
51: "bowl",
|
| 75 |
+
52: "banana",
|
| 76 |
+
53: "apple",
|
| 77 |
+
54: "sandwich",
|
| 78 |
+
55: "orange",
|
| 79 |
+
56: "broccoli",
|
| 80 |
+
57: "carrot",
|
| 81 |
+
58: "hot dog",
|
| 82 |
+
59: "pizza",
|
| 83 |
+
60: "donut",
|
| 84 |
+
61: "cake",
|
| 85 |
+
62: "chair",
|
| 86 |
+
63: "couch",
|
| 87 |
+
64: "potted plant",
|
| 88 |
+
65: "bed",
|
| 89 |
+
67: "dining table",
|
| 90 |
+
70: "toilet",
|
| 91 |
+
72: "tv",
|
| 92 |
+
73: "laptop",
|
| 93 |
+
74: "mouse",
|
| 94 |
+
75: "remote",
|
| 95 |
+
76: "keyboard",
|
| 96 |
+
77: "cell phone",
|
| 97 |
+
78: "microwave",
|
| 98 |
+
79: "oven",
|
| 99 |
+
80: "toaster",
|
| 100 |
+
81: "sink",
|
| 101 |
+
82: "refrigerator",
|
| 102 |
+
84: "book",
|
| 103 |
+
85: "clock",
|
| 104 |
+
86: "vase",
|
| 105 |
+
87: "scissors",
|
| 106 |
+
88: "teddy bear",
|
| 107 |
+
89: "hair drier",
|
| 108 |
+
90: "toothbrush",
|
| 109 |
+
}
|
| 110 |
+
_DATASET_URI = (
|
| 111 |
+
"https://eto-public.s3.us-west-2.amazonaws.com/datasets/coco/coco.lance.tar.gz"
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
class Coco(datasets.ArrowBasedBuilder):
|
| 116 |
+
"""COCO: Microsoft common object in context dataset"""
|
| 117 |
+
|
| 118 |
+
def _info(self):
|
| 119 |
+
class_names = []
|
| 120 |
+
for i in range(0, max(_CLASS_MAP.keys()) + 1):
|
| 121 |
+
class_names.append(_CLASS_MAP.get(i, f"N/A-{i}"))
|
| 122 |
+
return datasets.DatasetInfo(
|
| 123 |
+
description="COCO: Microsoft object detection dataset",
|
| 124 |
+
features=datasets.Features(
|
| 125 |
+
{
|
| 126 |
+
"image": datasets.Image(),
|
| 127 |
+
"split": datasets.Value("string"),
|
| 128 |
+
"annotations": datasets.Sequence(
|
| 129 |
+
{
|
| 130 |
+
"bbox": datasets.Sequence(
|
| 131 |
+
datasets.Value("float32"), length=4
|
| 132 |
+
),
|
| 133 |
+
"category_id": datasets.ClassLabel(names=class_names),
|
| 134 |
+
}
|
| 135 |
+
),
|
| 136 |
+
}
|
| 137 |
+
),
|
| 138 |
+
supervised_keys=None,
|
| 139 |
+
homepage="https://github.com/eto-ai/lance/tree/main/python/benchmarks/coco",
|
| 140 |
+
)
|
| 141 |
+
|
| 142 |
+
def _split_generators(
|
| 143 |
+
self, dl_manager: datasets.DownloadManager
|
| 144 |
+
) -> List[datasets.SplitGenerator]:
|
| 145 |
+
extracted_dir = dl_manager.download_and_extract(_DATASET_URI)
|
| 146 |
+
base_uri = os.path.join(extracted_dir, "coco.lance")
|
| 147 |
+
return [
|
| 148 |
+
datasets.SplitGenerator(
|
| 149 |
+
name=datasets.Split.TRAIN,
|
| 150 |
+
gen_kwargs={"split": "train", "base_uri": base_uri},
|
| 151 |
+
),
|
| 152 |
+
datasets.SplitGenerator(
|
| 153 |
+
name=datasets.Split.VALIDATION,
|
| 154 |
+
gen_kwargs={"split": "val", "base_uri": base_uri},
|
| 155 |
+
),
|
| 156 |
+
datasets.SplitGenerator(
|
| 157 |
+
name=datasets.Split.TEST,
|
| 158 |
+
gen_kwargs={"split": "test", "base_uri": base_uri},
|
| 159 |
+
),
|
| 160 |
+
]
|
| 161 |
+
|
| 162 |
+
def _generate_tables(self, split, base_uri):
|
| 163 |
+
idx = 0
|
| 164 |
+
dataset = lance.dataset(base_uri)
|
| 165 |
+
scanner = dataset.scanner(
|
| 166 |
+
filter=pc.field("split") == split,
|
| 167 |
+
)
|
| 168 |
+
for batch in scanner.to_batches(): # type: pa.RecordBatch
|
| 169 |
+
cols = []
|
| 170 |
+
names = []
|
| 171 |
+
|
| 172 |
+
annotations = batch.column("annotations")
|
| 173 |
+
if len(annotations) == 0:
|
| 174 |
+
continue
|
| 175 |
+
cols.append(annotations)
|
| 176 |
+
names.append("annotations")
|
| 177 |
+
|
| 178 |
+
# Decode split because Huggingface does not support dictionary yet.
|
| 179 |
+
split_arr = batch.column("split").dictionary_decode()
|
| 180 |
+
cols.append(split_arr)
|
| 181 |
+
names.append("split")
|
| 182 |
+
|
| 183 |
+
bytes_arr = batch.column("image").storage
|
| 184 |
+
arr = pa.StructArray.from_arrays([bytes_arr], ["bytes"])
|
| 185 |
+
cols.append(arr)
|
| 186 |
+
names.append("image")
|
| 187 |
+
|
| 188 |
+
yield idx, pa.Table.from_arrays(cols, names)
|
| 189 |
+
idx += 1
|