""" Canopy height model helpers. These utilities create canopy height models (CHM) from voxelized point cloud data cubes while applying a simple adaptive filter to smooth noisy ground estimates (DTM). Functions are written with clarity and deterministic output in mind for use in notebooks and scripts. """ from __future__ import annotations from typing import Tuple import numpy as np from numpy.typing import NDArray Array2D = NDArray[np.floating] Array3D = NDArray[np.floating] def apply_kernel(dtm: Array2D, center: Tuple[int, int], kernel_size: int) -> Array2D: """ Return a window of `dtm` centered on `center`, clipped to array bounds. Parameters ---------- dtm: Two-dimensional digital terrain model array. center: (row, column) index around which to extract the window. kernel_size: Size of the square window (must be positive). """ if kernel_size <= 0: raise ValueError("kernel_size must be a positive integer.") half = kernel_size // 2 row_start = max(center[0] - half, 0) row_end = min(center[0] + half + 1, dtm.shape[0]) col_start = max(center[1] - half, 0) col_end = min(center[1] + half + 1, dtm.shape[1]) return dtm[row_start:row_end, col_start:col_end] def adaptive_dtm_filter( dtm: Array2D, kernel_size: int = 7, percentile: float = 50.0 ) -> Array2D: """ Smooth the DTM by replacing outliers with the mean of local lower-percentile values. Each pixel greater than the specified percentile in its neighborhood is replaced by the mean of the values at or below that percentile. This mitigates spikes that otherwise lead to artifacts in the derived CHM. """ filtered = dtm.copy() rows, cols = filtered.shape for row in range(rows): for col in range(cols): window = apply_kernel(filtered, (row, col), kernel_size).ravel() if window.size == 0: continue threshold = float(np.percentile(window, percentile)) if filtered[row, col] > threshold: lower_values = window[window <= threshold] if lower_values.size: filtered[row, col] = float(lower_values.mean()) return filtered def hillshade( array: Array2D, azimuth: float = 90.0, angle_altitude: float = 60.0 ) -> Array2D: """ Generate a simple hillshade from a 2D array for visualization. Parameters use degrees, consistent with most GIS tools. """ azimuth = 360.0 - azimuth x_gradient, y_gradient = np.gradient(array) slope = np.pi / 2.0 - np.arctan(np.sqrt(x_gradient * x_gradient + y_gradient * y_gradient)) aspect = np.arctan2(-x_gradient, y_gradient) azimuth_rad = azimuth * np.pi / 180.0 altitude_rad = angle_altitude * np.pi / 180.0 shaded = ( np.sin(altitude_rad) * np.sin(slope) + np.cos(altitude_rad) * np.cos(slope) * np.cos((azimuth_rad - np.pi / 2.0) - aspect) ) return 255.0 * (shaded + 1.0) / 2.0 def calc_height_surface(cube: Array3D, percentile: float) -> NDArray[np.int64]: """ Compute the height surface where the cumulative density exceeds `percentile`. """ cumulative = np.cumsum(cube, axis=0) maxima = cumulative.max(axis=0) maxima[maxima == 0] = 1 # avoid division by zero normalized = cumulative / maxima surface = normalized > percentile return np.argmax(surface, axis=0).astype(np.int64) def create_chm( cube: Array3D, canopy_percentile: float = 0.98, dtm_percentile: float = 0.05, kernel_size: int = 7 ) -> tuple[Array2D, Array2D, Array2D, NDArray[np.int64]]: """ Build a canopy height model, ground model, hillshade, and DEM from a cube. Returns ------- chm: Canopy height model (DEM minus DTM). dtm: Smoothed digital terrain model. dtm_hillshade: Hillshaded representation of the DTM for visualization. dem: Digital elevation model derived from the cube percentile. """ dtm = calc_height_surface(cube, dtm_percentile) dtm = adaptive_dtm_filter(dtm, kernel_size=kernel_size) dem = calc_height_surface(cube, canopy_percentile) chm = dem - dtm return chm, dtm, hillshade(dtm), dem # Backwards-compatible aliases for existing notebooks/scripts. calcSurf = calc_height_surface createCHM = create_chm __all__ = [ "adaptive_dtm_filter", "apply_kernel", "calc_height_surface", "calcSurf", "create_chm", "createCHM", "hillshade", ]