from datasets import load_dataset from tqdm import tqdm import torch from torch.utils.data import DataLoader from scripts.forward_model import LidarForwardImagingModel forward_model = LidarForwardImagingModel() BATCH_SIZE = 64 def make_loader(split: str): ds = load_dataset("anfera236/HHDC", split=split) # return PyTorch tensors for the "cube" column ds.set_format(type="torch", columns=["cube"]) # wrap in a DataLoader to get batches loader = DataLoader( ds, batch_size=BATCH_SIZE, shuffle=False, # no need to shuffle for shape checking ) return ds, loader def check_split(split_name: str): print(f"Checking {split_name} dataset batches (batch_size={BATCH_SIZE})...") ds, loader = make_loader(split_name) for batch in tqdm(loader): cubes = batch["cube"] # shape: (B, 128, 48, 48) # sanity check on input shape assert cubes.ndim == 4, f"Expected 4D input (B, 128, 48, 48), got {cubes.shape}" assert cubes.shape[1:] == (128, 48, 48), f"Bad input sample shape: {cubes.shape}" # forward pass (expects model to support batched input) output = forward_model(cubes) # expected shape: (B, 128, 32, 16) # sanity checks on output shape assert output.ndim == 4, f"Expected 4D output (B, 128, 32, 16), got {output.shape}" assert output.shape[0] == cubes.shape[0], ( f"Batch size mismatch: input B={cubes.shape[0]}, output B={output.shape[0]}" ) assert output.shape[1:] == (128, 32, 16), f"Bad output sample shape: {output.shape}" if __name__ == "__main__": check_split("train") check_split("validation") check_split("test") print("All splits passed shape checks ✅")