Datasets:
JerryLife
commited on
Commit
·
a63309e
1
Parent(s):
8e68522
Update readme
Browse files
README.md
CHANGED
|
@@ -1,104 +1,719 @@
|
|
| 1 |
---
|
| 2 |
license: cc-by-4.0
|
| 3 |
task_categories:
|
|
|
|
| 4 |
- tabular-classification
|
| 5 |
- tabular-regression
|
| 6 |
language:
|
| 7 |
- en
|
| 8 |
tags:
|
| 9 |
-
-
|
| 10 |
-
-
|
| 11 |
-
-
|
|
|
|
|
|
|
| 12 |
size_categories:
|
| 13 |
- 10B<n<100B
|
| 14 |
---
|
| 15 |
|
| 16 |
# WikiDBGraph Dataset
|
| 17 |
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
**
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
**
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
**
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
**
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
**
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
license: cc-by-4.0
|
| 3 |
task_categories:
|
| 4 |
+
- graph-ml
|
| 5 |
- tabular-classification
|
| 6 |
- tabular-regression
|
| 7 |
language:
|
| 8 |
- en
|
| 9 |
tags:
|
| 10 |
+
- database-analysis
|
| 11 |
+
- graph-similarity
|
| 12 |
+
- federated-learning
|
| 13 |
+
- schema-matching
|
| 14 |
+
- wikidata
|
| 15 |
size_categories:
|
| 16 |
- 10B<n<100B
|
| 17 |
---
|
| 18 |
|
| 19 |
# WikiDBGraph Dataset
|
| 20 |
|
| 21 |
+
WikiDBGraph is a comprehensive dataset for database graph analysis, containing structural and semantic properties of 100,000 Wikidata-derived databases. The dataset includes graph representations, similarity metrics, community structures, and various statistical properties designed for federated learning research and database schema matching tasks.
|
| 22 |
+
|
| 23 |
+
## Dataset Overview
|
| 24 |
+
|
| 25 |
+
This dataset provides graph-based analysis of database schemas, enabling research in:
|
| 26 |
+
- **Database similarity and matching**: Finding structurally and semantically similar databases
|
| 27 |
+
- **Federated learning**: Training machine learning models across distributed database pairs
|
| 28 |
+
- **Graph analysis**: Community detection, connected components, and structural properties
|
| 29 |
+
- **Schema analysis**: Statistical properties of database schemas including cardinality, entropy, and sparsity
|
| 30 |
+
|
| 31 |
+
### Statistics
|
| 32 |
+
|
| 33 |
+
- **Total Databases**: 100,000
|
| 34 |
+
- **Total Edges**: 17,858,194 (at threshold 0.94)
|
| 35 |
+
- **Connected Components**: 6,109
|
| 36 |
+
- **Communities**: 6,133
|
| 37 |
+
- **Largest Component**: 10,703 nodes
|
| 38 |
+
- **Modularity Score**: 0.5366
|
| 39 |
+
|
| 40 |
+
## Dataset Structure
|
| 41 |
+
|
| 42 |
+
The dataset consists of 15 files organized into four categories:
|
| 43 |
+
|
| 44 |
+
### 1. Graph Structure Files
|
| 45 |
+
|
| 46 |
+
#### `graph_raw_0.94.dgl`
|
| 47 |
+
DGL (Deep Graph Library) graph file containing the complete database similarity graph.
|
| 48 |
+
|
| 49 |
+
**Structure**:
|
| 50 |
+
- **Nodes**: 100,000 database IDs
|
| 51 |
+
- **Edges**: 17,858,194 pairs with similarity ≥ 0.94
|
| 52 |
+
- **Node Data**:
|
| 53 |
+
- `embedding`: 768-dimensional node embeddings (if available)
|
| 54 |
+
- **Edge Data**:
|
| 55 |
+
- `weight`: Edge similarity scores (float32)
|
| 56 |
+
- `gt_edge`: Ground truth edge labels (float32)
|
| 57 |
+
|
| 58 |
+
**Loading**:
|
| 59 |
+
```python
|
| 60 |
+
import dgl
|
| 61 |
+
import torch
|
| 62 |
+
|
| 63 |
+
# Load the graph
|
| 64 |
+
graphs, _ = dgl.load_graphs('graph_raw_0.94.dgl')
|
| 65 |
+
graph = graphs[0]
|
| 66 |
+
|
| 67 |
+
# Access nodes and edges
|
| 68 |
+
num_nodes = graph.num_nodes() # 100000
|
| 69 |
+
num_edges = graph.num_edges() # 17858194
|
| 70 |
+
|
| 71 |
+
# Access edge data
|
| 72 |
+
src, dst = graph.edges()
|
| 73 |
+
edge_weights = graph.edata['weight']
|
| 74 |
+
edge_labels = graph.edata['gt_edge']
|
| 75 |
+
|
| 76 |
+
# Access node embeddings (if available)
|
| 77 |
+
if 'embedding' in graph.ndata:
|
| 78 |
+
node_embeddings = graph.ndata['embedding'] # shape: (100000, 768)
|
| 79 |
+
```
|
| 80 |
+
|
| 81 |
+
#### `database_embeddings.pt`
|
| 82 |
+
PyTorch tensor file containing pre-computed 768-dimensional embeddings for all databases.
|
| 83 |
+
|
| 84 |
+
**Structure**:
|
| 85 |
+
- Tensor shape: `(100000, 768)`
|
| 86 |
+
- Data type: float32
|
| 87 |
+
- Embeddings generated using BGE (BAAI General Embedding) model
|
| 88 |
+
|
| 89 |
+
**Loading**:
|
| 90 |
+
```python
|
| 91 |
+
import torch
|
| 92 |
+
|
| 93 |
+
embeddings = torch.load('database_embeddings.pt', weights_only=True)
|
| 94 |
+
print(embeddings.shape) # torch.Size([100000, 768])
|
| 95 |
+
|
| 96 |
+
# Get embedding for specific database
|
| 97 |
+
db_idx = 42
|
| 98 |
+
db_embedding = embeddings[db_idx]
|
| 99 |
+
```
|
| 100 |
+
|
| 101 |
+
### 2. Edge Files (Database Pair Relationships)
|
| 102 |
+
|
| 103 |
+
#### `filtered_edges_threshold_0.94.csv`
|
| 104 |
+
Main edge list with database pairs having similarity ≥ 0.94.
|
| 105 |
+
|
| 106 |
+
**Columns**:
|
| 107 |
+
- `src` (float): Source database ID
|
| 108 |
+
- `tgt` (float): Target database ID
|
| 109 |
+
- `similarity` (float): Cosine similarity score [0.94, 1.0]
|
| 110 |
+
- `label` (float): Ground truth label (0.0 or 1.0)
|
| 111 |
+
- `edge` (int): Edge indicator (always 1)
|
| 112 |
+
|
| 113 |
+
**Loading**:
|
| 114 |
+
```python
|
| 115 |
+
import pandas as pd
|
| 116 |
+
|
| 117 |
+
edges = pd.read_csv('filtered_edges_threshold_0.94.csv')
|
| 118 |
+
print(f"Total edges: {len(edges):,}")
|
| 119 |
+
|
| 120 |
+
# Find highly similar pairs
|
| 121 |
+
high_sim = edges[edges['similarity'] >= 0.99]
|
| 122 |
+
print(f"Pairs with similarity ≥ 0.99: {len(high_sim):,}")
|
| 123 |
+
```
|
| 124 |
+
|
| 125 |
+
**Example rows**:
|
| 126 |
+
```
|
| 127 |
+
src tgt similarity label edge
|
| 128 |
+
26218.0 44011.0 0.9896456 0.0 1
|
| 129 |
+
26218.0 44102.0 0.9908572 0.0 1
|
| 130 |
+
```
|
| 131 |
+
|
| 132 |
+
#### `edges_list_th0.6713.csv`
|
| 133 |
+
Extended edge list with lower similarity threshold (≥ 0.6713).
|
| 134 |
+
|
| 135 |
+
**Columns**:
|
| 136 |
+
- `src` (str): Source database ID (padded format, e.g., "00000")
|
| 137 |
+
- `tgt` (str): Target database ID (padded format)
|
| 138 |
+
- `similarity` (float): Cosine similarity score [0.6713, 1.0]
|
| 139 |
+
- `label` (float): Ground truth label
|
| 140 |
+
|
| 141 |
+
**Loading**:
|
| 142 |
+
```python
|
| 143 |
+
import pandas as pd
|
| 144 |
+
|
| 145 |
+
edges = pd.read_csv('edges_list_th0.6713.csv')
|
| 146 |
+
|
| 147 |
+
# Database IDs are strings with leading zeros
|
| 148 |
+
print(edges['src'].head()) # "00000", "00000", "00000", ...
|
| 149 |
+
|
| 150 |
+
# Filter by similarity threshold
|
| 151 |
+
threshold = 0.90
|
| 152 |
+
filtered = edges[edges['similarity'] >= threshold]
|
| 153 |
+
```
|
| 154 |
+
|
| 155 |
+
#### `edge_structural_properties_GED_0.94.csv`
|
| 156 |
+
Detailed structural properties for database pairs at threshold 0.94.
|
| 157 |
+
|
| 158 |
+
**Columns**:
|
| 159 |
+
- `db_id1` (int): First database ID
|
| 160 |
+
- `db_id2` (int): Second database ID
|
| 161 |
+
- `jaccard_table_names` (float): Jaccard similarity of table names [0.0, 1.0]
|
| 162 |
+
- `jaccard_columns` (float): Jaccard similarity of column names [0.0, 1.0]
|
| 163 |
+
- `jaccard_data_types` (float): Jaccard similarity of data types [0.0, 1.0]
|
| 164 |
+
- `hellinger_distance_data_types` (float): Hellinger distance between data type distributions
|
| 165 |
+
- `graph_edit_distance` (float): Graph edit distance between schemas
|
| 166 |
+
- `common_tables` (int): Number of common table names
|
| 167 |
+
- `common_columns` (int): Number of common column names
|
| 168 |
+
- `common_data_types` (int): Number of common data types
|
| 169 |
+
|
| 170 |
+
**Loading**:
|
| 171 |
+
```python
|
| 172 |
+
import pandas as pd
|
| 173 |
+
|
| 174 |
+
edge_props = pd.read_csv('edge_structural_properties_GED_0.94.csv')
|
| 175 |
+
|
| 176 |
+
# Find pairs with high structural similarity
|
| 177 |
+
high_jaccard = edge_props[edge_props['jaccard_columns'] >= 0.5]
|
| 178 |
+
print(f"Pairs with ≥50% column overlap: {len(high_jaccard):,}")
|
| 179 |
+
|
| 180 |
+
# Analyze graph edit distance
|
| 181 |
+
print(f"Mean GED: {edge_props['graph_edit_distance'].mean():.2f}")
|
| 182 |
+
print(f"Median GED: {edge_props['graph_edit_distance'].median():.2f}")
|
| 183 |
+
```
|
| 184 |
+
|
| 185 |
+
#### `distdiv_results.csv`
|
| 186 |
+
Distribution divergence metrics for database pairs.
|
| 187 |
+
|
| 188 |
+
**Columns**:
|
| 189 |
+
- `src` (int): Source database ID
|
| 190 |
+
- `tgt` (int): Target database ID
|
| 191 |
+
- `distdiv` (float): Distribution divergence score
|
| 192 |
+
- `overlap_ratio` (float): Column overlap ratio [0.0, 1.0]
|
| 193 |
+
- `shared_column_count` (int): Number of shared columns
|
| 194 |
+
|
| 195 |
+
**Loading**:
|
| 196 |
+
```python
|
| 197 |
+
import pandas as pd
|
| 198 |
+
|
| 199 |
+
distdiv = pd.read_csv('distdiv_results.csv')
|
| 200 |
+
|
| 201 |
+
# Find pairs with low divergence (more similar distributions)
|
| 202 |
+
similar_dist = distdiv[distdiv['distdiv'] < 15.0]
|
| 203 |
+
|
| 204 |
+
# Analyze overlap patterns
|
| 205 |
+
high_overlap = distdiv[distdiv['overlap_ratio'] >= 0.3]
|
| 206 |
+
print(f"Pairs with ≥30% overlap: {len(high_overlap):,}")
|
| 207 |
+
```
|
| 208 |
+
|
| 209 |
+
#### `all_join_size_results_est.csv`
|
| 210 |
+
Estimated join sizes for databases (cardinality estimation).
|
| 211 |
+
|
| 212 |
+
**Columns**:
|
| 213 |
+
- `db_id` (int): Database ID
|
| 214 |
+
- `all_join_size` (float): Estimated size of full outer join across all tables
|
| 215 |
+
|
| 216 |
+
**Loading**:
|
| 217 |
+
```python
|
| 218 |
+
import pandas as pd
|
| 219 |
+
|
| 220 |
+
join_sizes = pd.read_csv('all_join_size_results_est.csv')
|
| 221 |
+
|
| 222 |
+
# Analyze join complexity
|
| 223 |
+
print(f"Mean join size: {join_sizes['all_join_size'].mean():.2f}")
|
| 224 |
+
print(f"Max join size: {join_sizes['all_join_size'].max():.2f}")
|
| 225 |
+
|
| 226 |
+
# Large databases (complex joins)
|
| 227 |
+
large_dbs = join_sizes[join_sizes['all_join_size'] > 1000]
|
| 228 |
+
```
|
| 229 |
+
|
| 230 |
+
### 3. Node Files (Database Properties)
|
| 231 |
+
|
| 232 |
+
#### `node_structural_properties.csv`
|
| 233 |
+
Comprehensive structural properties for each database schema.
|
| 234 |
+
|
| 235 |
+
**Columns**:
|
| 236 |
+
- `db_id` (int): Database ID
|
| 237 |
+
- `num_tables` (int): Number of tables in the database
|
| 238 |
+
- `num_columns` (int): Total number of columns across all tables
|
| 239 |
+
- `foreign_key_density` (float): Ratio of foreign keys to possible relationships
|
| 240 |
+
- `avg_table_connectivity` (float): Average number of connections per table
|
| 241 |
+
- `median_table_connectivity` (float): Median connections per table
|
| 242 |
+
- `min_table_connectivity` (float): Minimum connections for any table
|
| 243 |
+
- `max_table_connectivity` (float): Maximum connections for any table
|
| 244 |
+
- `data_type_proportions` (str): JSON string with data type distribution
|
| 245 |
+
- `data_types` (str): JSON string with count of each data type
|
| 246 |
+
- `wikidata_properties` (int): Number of Wikidata properties used
|
| 247 |
+
|
| 248 |
+
**Loading**:
|
| 249 |
+
```python
|
| 250 |
+
import pandas as pd
|
| 251 |
+
import json
|
| 252 |
+
|
| 253 |
+
node_props = pd.read_csv('node_structural_properties.csv')
|
| 254 |
+
|
| 255 |
+
# Parse JSON columns
|
| 256 |
+
node_props['data_type_dist'] = node_props['data_type_proportions'].apply(
|
| 257 |
+
lambda x: json.loads(x.replace("'", '"'))
|
| 258 |
+
)
|
| 259 |
+
|
| 260 |
+
# Analyze database complexity
|
| 261 |
+
complex_dbs = node_props[node_props['num_tables'] > 10]
|
| 262 |
+
print(f"Databases with >10 tables: {len(complex_dbs):,}")
|
| 263 |
+
|
| 264 |
+
# Foreign key density analysis
|
| 265 |
+
print(f"Mean FK density: {node_props['foreign_key_density'].mean():.4f}")
|
| 266 |
+
```
|
| 267 |
+
|
| 268 |
+
**Example row**:
|
| 269 |
+
```
|
| 270 |
+
db_id: 88880
|
| 271 |
+
num_tables: 2
|
| 272 |
+
num_columns: 24
|
| 273 |
+
foreign_key_density: 0.0833
|
| 274 |
+
avg_table_connectivity: 1.5
|
| 275 |
+
data_type_proportions: {'string': 0.417, 'wikibase-entityid': 0.583}
|
| 276 |
+
```
|
| 277 |
+
|
| 278 |
+
#### `data_volume.csv`
|
| 279 |
+
Storage size information for each database.
|
| 280 |
+
|
| 281 |
+
**Columns**:
|
| 282 |
+
- `db_id` (str/int): Database ID (may have leading zeros)
|
| 283 |
+
- `volume_bytes` (int): Total data volume in bytes
|
| 284 |
+
|
| 285 |
+
**Loading**:
|
| 286 |
+
```python
|
| 287 |
+
import pandas as pd
|
| 288 |
+
|
| 289 |
+
volumes = pd.read_csv('data_volume.csv')
|
| 290 |
+
|
| 291 |
+
# Convert to more readable units
|
| 292 |
+
volumes['volume_mb'] = volumes['volume_bytes'] / (1024 * 1024)
|
| 293 |
+
volumes['volume_gb'] = volumes['volume_bytes'] / (1024 * 1024 * 1024)
|
| 294 |
+
|
| 295 |
+
# Find largest databases
|
| 296 |
+
top_10 = volumes.nlargest(10, 'volume_bytes')
|
| 297 |
+
print(top_10[['db_id', 'volume_gb']])
|
| 298 |
+
```
|
| 299 |
+
|
| 300 |
+
### 4. Column-Level Statistics
|
| 301 |
+
|
| 302 |
+
#### `column_cardinality.csv`
|
| 303 |
+
Distinct value counts for all columns.
|
| 304 |
+
|
| 305 |
+
**Columns**:
|
| 306 |
+
- `db_id` (str/int): Database ID
|
| 307 |
+
- `table_name` (str): Table name
|
| 308 |
+
- `column_name` (str): Column name
|
| 309 |
+
- `n_distinct` (int): Number of distinct values
|
| 310 |
+
|
| 311 |
+
**Loading**:
|
| 312 |
+
```python
|
| 313 |
+
import pandas as pd
|
| 314 |
+
|
| 315 |
+
cardinality = pd.read_csv('column_cardinality.csv')
|
| 316 |
+
|
| 317 |
+
# High cardinality columns (potentially good as keys)
|
| 318 |
+
high_card = cardinality[cardinality['n_distinct'] > 100]
|
| 319 |
+
|
| 320 |
+
# Analyze cardinality distribution
|
| 321 |
+
print(f"Mean distinct values: {cardinality['n_distinct'].mean():.2f}")
|
| 322 |
+
print(f"Median distinct values: {cardinality['n_distinct'].median():.2f}")
|
| 323 |
+
```
|
| 324 |
+
|
| 325 |
+
**Example rows**:
|
| 326 |
+
```
|
| 327 |
+
db_id table_name column_name n_distinct
|
| 328 |
+
6 scholarly_articles article_title 275
|
| 329 |
+
6 scholarly_articles article_description 197
|
| 330 |
+
6 scholarly_articles pub_med_id 269
|
| 331 |
+
```
|
| 332 |
+
|
| 333 |
+
#### `column_entropy.csv`
|
| 334 |
+
Shannon entropy for column value distributions.
|
| 335 |
+
|
| 336 |
+
**Columns**:
|
| 337 |
+
- `db_id` (str): Database ID (padded format)
|
| 338 |
+
- `table_name` (str): Table name
|
| 339 |
+
- `column_name` (str): Column name
|
| 340 |
+
- `entropy` (float): Shannon entropy value [0.0, ∞)
|
| 341 |
+
|
| 342 |
+
**Loading**:
|
| 343 |
+
```python
|
| 344 |
+
import pandas as pd
|
| 345 |
+
|
| 346 |
+
entropy = pd.read_csv('column_entropy.csv')
|
| 347 |
+
|
| 348 |
+
# High entropy columns (high information content)
|
| 349 |
+
high_entropy = entropy[entropy['entropy'] > 3.0]
|
| 350 |
+
|
| 351 |
+
# Low entropy columns (low diversity)
|
| 352 |
+
low_entropy = entropy[entropy['entropy'] < 0.5]
|
| 353 |
+
|
| 354 |
+
# Distribution analysis
|
| 355 |
+
print(f"Mean entropy: {entropy['entropy'].mean():.3f}")
|
| 356 |
+
```
|
| 357 |
+
|
| 358 |
+
**Example rows**:
|
| 359 |
+
```
|
| 360 |
+
db_id table_name column_name entropy
|
| 361 |
+
00001 descendants_of_john_i full_name 3.322
|
| 362 |
+
00001 descendants_of_john_i gender 0.881
|
| 363 |
+
00001 descendants_of_john_i father_name 0.000
|
| 364 |
+
```
|
| 365 |
+
|
| 366 |
+
#### `column_sparsity.csv`
|
| 367 |
+
Missing value ratios for all columns.
|
| 368 |
+
|
| 369 |
+
**Columns**:
|
| 370 |
+
- `db_id` (str): Database ID (padded format)
|
| 371 |
+
- `table_name` (str): Table name
|
| 372 |
+
- `column_name` (str): Column name
|
| 373 |
+
- `sparsity` (float): Ratio of missing values [0.0, 1.0]
|
| 374 |
+
|
| 375 |
+
**Loading**:
|
| 376 |
+
```python
|
| 377 |
+
import pandas as pd
|
| 378 |
+
|
| 379 |
+
sparsity = pd.read_csv('column_sparsity.csv')
|
| 380 |
+
|
| 381 |
+
# Dense columns (few missing values)
|
| 382 |
+
dense = sparsity[sparsity['sparsity'] < 0.1]
|
| 383 |
+
|
| 384 |
+
# Sparse columns (many missing values)
|
| 385 |
+
sparse = sparsity[sparsity['sparsity'] > 0.5]
|
| 386 |
+
|
| 387 |
+
# Quality assessment
|
| 388 |
+
print(f"Columns with >50% missing: {len(sparse):,}")
|
| 389 |
+
print(f"Mean sparsity: {sparsity['sparsity'].mean():.3f}")
|
| 390 |
+
```
|
| 391 |
+
|
| 392 |
+
**Example rows**:
|
| 393 |
+
```
|
| 394 |
+
db_id table_name column_name sparsity
|
| 395 |
+
00009 FamousPencilMoustacheWearers Name 0.000
|
| 396 |
+
00009 FamousPencilMoustacheWearers Biography 0.000
|
| 397 |
+
00009 FamousPencilMoustacheWearers ViafId 0.222
|
| 398 |
+
```
|
| 399 |
+
|
| 400 |
+
### 5. Clustering and Community Files
|
| 401 |
+
|
| 402 |
+
#### `community_assignment_0.94.csv`
|
| 403 |
+
Community detection results using Louvain algorithm.
|
| 404 |
+
|
| 405 |
+
**Columns**:
|
| 406 |
+
- `node_id` (int): Database ID
|
| 407 |
+
- `partition` (int): Community/partition ID
|
| 408 |
+
|
| 409 |
+
**Loading**:
|
| 410 |
+
```python
|
| 411 |
+
import pandas as pd
|
| 412 |
+
|
| 413 |
+
communities = pd.read_csv('community_assignment_0.94.csv')
|
| 414 |
+
|
| 415 |
+
# Analyze community structure
|
| 416 |
+
community_sizes = communities['partition'].value_counts()
|
| 417 |
+
print(f"Number of communities: {len(community_sizes)}")
|
| 418 |
+
print(f"Largest community size: {community_sizes.max()}")
|
| 419 |
+
|
| 420 |
+
# Get databases in a specific community
|
| 421 |
+
community_1 = communities[communities['partition'] == 1]['node_id'].tolist()
|
| 422 |
+
```
|
| 423 |
+
|
| 424 |
+
**Statistics**:
|
| 425 |
+
- Total communities: 6,133
|
| 426 |
+
- Largest community: 4,825 nodes
|
| 427 |
+
- Modularity: 0.5366
|
| 428 |
+
|
| 429 |
+
#### `cluster_assignments_dim2_sz100_msNone.csv`
|
| 430 |
+
Clustering results from dimensionality reduction (e.g., t-SNE, UMAP).
|
| 431 |
+
|
| 432 |
+
**Columns**:
|
| 433 |
+
- `db_id` (int): Database ID
|
| 434 |
+
- `cluster` (int): Cluster ID
|
| 435 |
+
|
| 436 |
+
**Loading**:
|
| 437 |
+
```python
|
| 438 |
+
import pandas as pd
|
| 439 |
+
|
| 440 |
+
clusters = pd.read_csv('cluster_assignments_dim2_sz100_msNone.csv')
|
| 441 |
+
|
| 442 |
+
# Analyze cluster distribution
|
| 443 |
+
cluster_sizes = clusters['cluster'].value_counts()
|
| 444 |
+
print(f"Number of clusters: {len(cluster_sizes)}")
|
| 445 |
+
|
| 446 |
+
# Get databases in a specific cluster
|
| 447 |
+
cluster_9 = clusters[clusters['cluster'] == 9]['db_id'].tolist()
|
| 448 |
+
```
|
| 449 |
+
|
| 450 |
+
### 6. Analysis Reports
|
| 451 |
+
|
| 452 |
+
#### `analysis_0.94_report.txt`
|
| 453 |
+
Comprehensive text report of graph analysis at threshold 0.94.
|
| 454 |
+
|
| 455 |
+
**Contents**:
|
| 456 |
+
- Graph statistics (nodes, edges)
|
| 457 |
+
- Connected components analysis
|
| 458 |
+
- Community detection results
|
| 459 |
+
- Top components and communities by size
|
| 460 |
+
|
| 461 |
+
**Loading**:
|
| 462 |
+
```python
|
| 463 |
+
with open('analysis_0.94_report.txt', 'r') as f:
|
| 464 |
+
report = f.read()
|
| 465 |
+
print(report)
|
| 466 |
+
```
|
| 467 |
+
|
| 468 |
+
**Key Metrics**:
|
| 469 |
+
- Total Nodes: 100,000
|
| 470 |
+
- Total Edges: 17,858,194
|
| 471 |
+
- Connected Components: 6,109
|
| 472 |
+
- Largest Component: 10,703 nodes
|
| 473 |
+
- Communities: 6,133
|
| 474 |
+
- Modularity: 0.5366
|
| 475 |
+
|
| 476 |
+
## Usage Examples
|
| 477 |
+
|
| 478 |
+
### Example 1: Finding Similar Database Pairs
|
| 479 |
+
|
| 480 |
+
```python
|
| 481 |
+
import pandas as pd
|
| 482 |
+
|
| 483 |
+
# Load edges with high similarity
|
| 484 |
+
edges = pd.read_csv('filtered_edges_threshold_0.94.csv')
|
| 485 |
+
|
| 486 |
+
# Find database pairs with similarity > 0.98
|
| 487 |
+
high_sim_pairs = edges[edges['similarity'] >= 0.98]
|
| 488 |
+
print(f"Found {len(high_sim_pairs)} pairs with similarity ≥ 0.98")
|
| 489 |
+
|
| 490 |
+
# Get top 10 most similar pairs
|
| 491 |
+
top_pairs = edges.nlargest(10, 'similarity')
|
| 492 |
+
for idx, row in top_pairs.iterrows():
|
| 493 |
+
print(f"DB {int(row['src'])} ↔ DB {int(row['tgt'])}: {row['similarity']:.4f}")
|
| 494 |
+
```
|
| 495 |
+
|
| 496 |
+
### Example 2: Analyzing Database Properties
|
| 497 |
+
|
| 498 |
+
```python
|
| 499 |
+
import pandas as pd
|
| 500 |
+
import json
|
| 501 |
+
|
| 502 |
+
# Load node properties
|
| 503 |
+
nodes = pd.read_csv('node_structural_properties.csv')
|
| 504 |
+
|
| 505 |
+
# Find complex databases
|
| 506 |
+
complex_dbs = nodes[
|
| 507 |
+
(nodes['num_tables'] > 10) &
|
| 508 |
+
(nodes['num_columns'] > 100)
|
| 509 |
+
]
|
| 510 |
+
|
| 511 |
+
print(f"Complex databases: {len(complex_dbs)}")
|
| 512 |
+
|
| 513 |
+
# Analyze data type distribution
|
| 514 |
+
for idx, row in complex_dbs.head().iterrows():
|
| 515 |
+
db_id = row['db_id']
|
| 516 |
+
types = json.loads(row['data_types'].replace("'", '"'))
|
| 517 |
+
print(f"DB {db_id}: {types}")
|
| 518 |
+
```
|
| 519 |
+
|
| 520 |
+
### Example 3: Loading and Analyzing the Graph
|
| 521 |
+
|
| 522 |
+
```python
|
| 523 |
+
import dgl
|
| 524 |
+
import torch
|
| 525 |
+
import pandas as pd
|
| 526 |
+
|
| 527 |
+
# Load DGL graph
|
| 528 |
+
graphs, _ = dgl.load_graphs('graph_raw_0.94.dgl')
|
| 529 |
+
graph = graphs[0]
|
| 530 |
+
|
| 531 |
+
# Basic statistics
|
| 532 |
+
print(f"Nodes: {graph.num_nodes():,}")
|
| 533 |
+
print(f"Edges: {graph.num_edges():,}")
|
| 534 |
+
|
| 535 |
+
# Analyze degree distribution
|
| 536 |
+
in_degrees = graph.in_degrees()
|
| 537 |
+
out_degrees = graph.out_degrees()
|
| 538 |
+
|
| 539 |
+
print(f"Average in-degree: {in_degrees.float().mean():.2f}")
|
| 540 |
+
print(f"Average out-degree: {out_degrees.float().mean():.2f}")
|
| 541 |
+
|
| 542 |
+
# Find highly connected nodes
|
| 543 |
+
top_nodes = torch.topk(in_degrees, k=10)
|
| 544 |
+
print(f"Top 10 most connected databases: {top_nodes.indices.tolist()}")
|
| 545 |
+
```
|
| 546 |
+
|
| 547 |
+
### Example 4: Federated Learning Pair Selection
|
| 548 |
+
|
| 549 |
+
```python
|
| 550 |
+
import pandas as pd
|
| 551 |
+
|
| 552 |
+
# Load edges and structural properties
|
| 553 |
+
edges = pd.read_csv('filtered_edges_threshold_0.94.csv')
|
| 554 |
+
edge_props = pd.read_csv('edge_structural_properties_GED_0.94.csv')
|
| 555 |
+
|
| 556 |
+
# Merge data
|
| 557 |
+
pairs = edges.merge(
|
| 558 |
+
edge_props,
|
| 559 |
+
left_on=['src', 'tgt'],
|
| 560 |
+
right_on=['db_id1', 'db_id2'],
|
| 561 |
+
how='inner'
|
| 562 |
+
)
|
| 563 |
+
|
| 564 |
+
# Select pairs for federated learning
|
| 565 |
+
# Criteria: high similarity + high column overlap + low GED
|
| 566 |
+
fl_candidates = pairs[
|
| 567 |
+
(pairs['similarity'] >= 0.98) &
|
| 568 |
+
(pairs['jaccard_columns'] >= 0.4) &
|
| 569 |
+
(pairs['graph_edit_distance'] <= 3.0)
|
| 570 |
+
]
|
| 571 |
+
|
| 572 |
+
print(f"FL candidate pairs: {len(fl_candidates)}")
|
| 573 |
+
|
| 574 |
+
# Sample pairs for experiments
|
| 575 |
+
sample = fl_candidates.sample(n=100, random_state=42)
|
| 576 |
+
```
|
| 577 |
+
|
| 578 |
+
### Example 5: Column Statistics Analysis
|
| 579 |
+
|
| 580 |
+
```python
|
| 581 |
+
import pandas as pd
|
| 582 |
+
|
| 583 |
+
# Load column-level statistics
|
| 584 |
+
cardinality = pd.read_csv('column_cardinality.csv')
|
| 585 |
+
entropy = pd.read_csv('column_entropy.csv')
|
| 586 |
+
sparsity = pd.read_csv('column_sparsity.csv')
|
| 587 |
+
|
| 588 |
+
# Merge on (db_id, table_name, column_name)
|
| 589 |
+
merged = cardinality.merge(entropy, on=['db_id', 'table_name', 'column_name'])
|
| 590 |
+
merged = merged.merge(sparsity, on=['db_id', 'table_name', 'column_name'])
|
| 591 |
+
|
| 592 |
+
# Find high-quality columns for machine learning
|
| 593 |
+
# Criteria: high cardinality, high entropy, low sparsity
|
| 594 |
+
quality_columns = merged[
|
| 595 |
+
(merged['n_distinct'] > 50) &
|
| 596 |
+
(merged['entropy'] > 2.0) &
|
| 597 |
+
(merged['sparsity'] < 0.1)
|
| 598 |
+
]
|
| 599 |
+
|
| 600 |
+
print(f"High-quality columns: {len(quality_columns)}")
|
| 601 |
+
```
|
| 602 |
+
|
| 603 |
+
### Example 6: Community Analysis
|
| 604 |
+
|
| 605 |
+
```python
|
| 606 |
+
import pandas as pd
|
| 607 |
+
|
| 608 |
+
# Load community assignments
|
| 609 |
+
communities = pd.read_csv('community_assignment_0.94.csv')
|
| 610 |
+
nodes = pd.read_csv('node_structural_properties.csv')
|
| 611 |
+
|
| 612 |
+
# Merge to get properties by community
|
| 613 |
+
community_props = communities.merge(
|
| 614 |
+
nodes,
|
| 615 |
+
left_on='node_id',
|
| 616 |
+
right_on='db_id'
|
| 617 |
+
)
|
| 618 |
+
|
| 619 |
+
# Analyze each community
|
| 620 |
+
for comm_id in community_props['partition'].unique()[:5]:
|
| 621 |
+
comm_data = community_props[community_props['partition'] == comm_id]
|
| 622 |
+
print(f"\nCommunity {comm_id}:")
|
| 623 |
+
print(f" Size: {len(comm_data)}")
|
| 624 |
+
print(f" Avg tables: {comm_data['num_tables'].mean():.2f}")
|
| 625 |
+
print(f" Avg columns: {comm_data['num_columns'].mean():.2f}")
|
| 626 |
+
```
|
| 627 |
+
|
| 628 |
+
## Applications
|
| 629 |
+
|
| 630 |
+
### 1. Federated Learning Research
|
| 631 |
+
Use the similarity graph to identify database pairs for federated learning experiments. The high-similarity pairs (≥0.98) are ideal for horizontal federated learning scenarios.
|
| 632 |
+
|
| 633 |
+
### 2. Schema Matching
|
| 634 |
+
Leverage structural properties and similarity metrics for automated schema matching and integration tasks.
|
| 635 |
+
|
| 636 |
+
### 3. Database Clustering
|
| 637 |
+
Use embeddings and community detection results to group similar databases for analysis or optimization.
|
| 638 |
+
|
| 639 |
+
### 4. Data Quality Assessment
|
| 640 |
+
Column-level statistics (cardinality, entropy, sparsity) enable systematic data quality evaluation across large database collections.
|
| 641 |
+
|
| 642 |
+
### 5. Graph Neural Networks
|
| 643 |
+
The DGL graph format is ready for training GNN models for link prediction, node classification, or graph classification tasks.
|
| 644 |
+
|
| 645 |
+
## Technical Details
|
| 646 |
+
|
| 647 |
+
### Similarity Computation
|
| 648 |
+
- **Method**: BGE (BAAI General Embedding) model for semantic embeddings
|
| 649 |
+
- **Metric**: Cosine similarity
|
| 650 |
+
- **Thresholds**: Multiple thresholds available (0.6713, 0.94, 0.96)
|
| 651 |
+
|
| 652 |
+
### Graph Construction
|
| 653 |
+
- **Nodes**: Database IDs (0 to 99,999)
|
| 654 |
+
- **Edges**: Database pairs with similarity above threshold
|
| 655 |
+
- **Edge weights**: Cosine similarity scores
|
| 656 |
+
- **Format**: DGL binary format for efficient loading
|
| 657 |
+
|
| 658 |
+
### Community Detection
|
| 659 |
+
- **Algorithm**: Louvain method
|
| 660 |
+
- **Modularity**: 0.5366 (indicates well-defined communities)
|
| 661 |
+
- **Resolution**: Default parameter
|
| 662 |
+
|
| 663 |
+
### Data Processing Pipeline
|
| 664 |
+
1. Schema extraction from Wikidata databases
|
| 665 |
+
2. Semantic embedding generation using BGE
|
| 666 |
+
3. Similarity computation across all pairs
|
| 667 |
+
4. Graph construction and filtering
|
| 668 |
+
5. Property extraction and statistical analysis
|
| 669 |
+
6. Community detection and clustering
|
| 670 |
+
|
| 671 |
+
## Data Format Standards
|
| 672 |
+
|
| 673 |
+
### Database ID Formats
|
| 674 |
+
- **Integer IDs**: Used in most files (0-99999)
|
| 675 |
+
- **Padded strings**: Used in some files (e.g., "00000", "00001")
|
| 676 |
+
- **Conversion**: `str(db_id).zfill(5)` for integer to padded string
|
| 677 |
+
|
| 678 |
+
### Missing Values
|
| 679 |
+
- Numerical columns: May contain `NaN` or `-0.0`
|
| 680 |
+
- String columns: Empty strings or missing entries
|
| 681 |
+
- Sparsity column: Explicit ratio of missing values
|
| 682 |
+
|
| 683 |
+
### Data Types
|
| 684 |
+
- `float32`: Similarity scores, weights, entropy
|
| 685 |
+
- `float64`: Statistical measures, ratios
|
| 686 |
+
- `int64`: Counts, IDs
|
| 687 |
+
- `string`: Names, identifiers
|
| 688 |
+
|
| 689 |
+
## File Size Information
|
| 690 |
+
|
| 691 |
+
Approximate file sizes:
|
| 692 |
+
- `graph_raw_0.94.dgl`: ~2.5 GB
|
| 693 |
+
- `database_embeddings.pt`: ~300 MB
|
| 694 |
+
- `filtered_edges_threshold_0.94.csv`: ~800 MB
|
| 695 |
+
- `edge_structural_properties_GED_0.94.csv`: ~400 MB
|
| 696 |
+
- `node_structural_properties.csv`: ~50 MB
|
| 697 |
+
- Column statistics CSVs: ~20-50 MB each
|
| 698 |
+
- Other files: <10 MB each
|
| 699 |
+
|
| 700 |
+
## Citation
|
| 701 |
+
|
| 702 |
+
If you use this dataset in your research, please cite:
|
| 703 |
+
|
| 704 |
+
```bibtex
|
| 705 |
+
@article{wu2025wikidbgraph,
|
| 706 |
+
title={WikiDBGraph: Large-Scale Database Graph of Wikidata for Collaborative Learning},
|
| 707 |
+
author={Wu, Zhaomin and Wang, Ziyang and He, Bingsheng},
|
| 708 |
+
journal={arXiv preprint arXiv:2505.16635},
|
| 709 |
+
year={2025}
|
| 710 |
+
}
|
| 711 |
+
```
|
| 712 |
+
|
| 713 |
+
## License
|
| 714 |
+
|
| 715 |
+
This dataset is licensed under Creative Commons Attribution 4.0 International (CC BY 4.0).
|
| 716 |
+
|
| 717 |
+
## Acknowledgments
|
| 718 |
+
|
| 719 |
+
This dataset is derived from Wikidata and builds upon the WikiDBGraph system for graph-based database analysis and federated learning. We acknowledge the Wikidata community for providing the underlying data infrastructure.
|