Improve model card: Update paper link, add GitHub link and usage example
Browse filesThis PR improves the model card by:
1. Updating the paper link to the official Hugging Face Papers page: [SLM-SQL: An Exploration of Small Language Models for Text-to-SQL](https://huggingface.co/papers/2507.22478).
2. Adding a prominent link to the GitHub repository in the "Important Links" section.
3. Including a "How to use" section with a Python code snippet that demonstrates how to generate SQL from a natural language question using the `transformers` library, including a database schema for better context.
These enhancements will make the model more accessible and easier for the community to understand and use.
README.md
CHANGED
|
@@ -1,19 +1,19 @@
|
|
| 1 |
---
|
| 2 |
-
pipeline_tag: text-generation
|
| 3 |
library_name: transformers
|
| 4 |
license: cc-by-nc-4.0
|
|
|
|
| 5 |
tags:
|
| 6 |
- text-to-sql
|
| 7 |
- reinforcement-learning
|
| 8 |
---
|
| 9 |
|
| 10 |
-
|
| 11 |
# SLM-SQL: An Exploration of Small Language Models for Text-to-SQL
|
| 12 |
|
| 13 |
### Important Links
|
| 14 |
|
| 15 |
-
π[
|
| 16 |
-
|
|
|
|
| 17 |
π€[ModelScope](https://modelscope.cn/collections/SLM-SQL-624bb6a60e9643) |
|
| 18 |
|
| 19 |
## News
|
|
@@ -42,6 +42,65 @@ tags:
|
|
| 42 |
|
| 43 |
<img src="https://raw.githubusercontent.com/CycloneBoy/slm_sql/main/data/image/slmsql_framework.png" height="500" alt="slmsql_framework">
|
| 44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
### Main Results
|
| 46 |
|
| 47 |
<img src="https://raw.githubusercontent.com/CycloneBoy/slm_sql/main/data/image/slmsql_bird_result.png" height="500" alt="slm_sql_result">
|
|
@@ -59,25 +118,25 @@ Performance Comparison of different Text-to-SQL methods on BIRD dev and test dat
|
|
| 59 |
|
| 60 |
| **Model** | Base Model | Train Method | Modelscope | HuggingFace |
|
| 61 |
|------------------------------------------|------------------------------|--------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
|
| 62 |
-
| SLM-SQL-Base-0.5B | Qwen2.5-Coder-0.5B-Instruct | SFT | [
|
| 63 |
-
| SLM-SQL-0.5B | Qwen2.5-Coder-0.5B-Instruct | SFT + GRPO | [
|
| 64 |
-
| CscSQL-Merge-Qwen2.5-Coder-0.5B-Instruct | Qwen2.5-Coder-0.5B-Instruct | SFT + GRPO | [
|
| 65 |
-
| SLM-SQL-Base-1.5B | Qwen2.5-Coder-1.5B-Instruct | SFT | [
|
| 66 |
-
| SLM-SQL-1.5B | Qwen2.5-Coder-1.5B-Instruct | SFT + GRPO | [
|
| 67 |
-
| CscSQL-Merge-Qwen2.5-Coder-1.5B-Instruct | Qwen2.5-Coder-1.5B-Instruct | SFT + GRPO | [
|
| 68 |
-
| SLM-SQL-Base-0.6B | Qwen3-0.6B | SFT | [
|
| 69 |
-
| SLM-SQL-0.6B | Qwen3-0.6B | SFT + GRPO | [
|
| 70 |
-
| SLM-SQL-Base-1.3B | deepseek-coder-1.3b-instruct | SFT | [
|
| 71 |
-
| SLM-SQL-1.3B | deepseek-coder-1.3b-instruct | SFT + GRPO | [
|
| 72 |
-
| SLM-SQL-Base-1B | Llama-3.2-1B-Instruct | SFT | [
|
| 73 |
|
| 74 |
## Dataset
|
| 75 |
|
| 76 |
-
| **Dataset**
|
| 77 |
-
|
| 78 |
-
| SynsQL-Think-916k
|
| 79 |
-
| SynsQL-Merge-Think-310k
|
| 80 |
-
| bird train and dev dataset | [
|
| 81 |
|
| 82 |
## TODO
|
| 83 |
|
|
|
|
| 1 |
---
|
|
|
|
| 2 |
library_name: transformers
|
| 3 |
license: cc-by-nc-4.0
|
| 4 |
+
pipeline_tag: text-generation
|
| 5 |
tags:
|
| 6 |
- text-to-sql
|
| 7 |
- reinforcement-learning
|
| 8 |
---
|
| 9 |
|
|
|
|
| 10 |
# SLM-SQL: An Exploration of Small Language Models for Text-to-SQL
|
| 11 |
|
| 12 |
### Important Links
|
| 13 |
|
| 14 |
+
π[Paper](https://huggingface.co/papers/2507.22478) |
|
| 15 |
+
\ud83d\udcbb[GitHub Repository](https://github.com/CycloneBoy/slm_sql) |
|
| 16 |
+
π€[HuggingFace Collection](https://huggingface.co/collections/cycloneboy/slm-sql-688b02f99f958d7a417658dc) |
|
| 17 |
π€[ModelScope](https://modelscope.cn/collections/SLM-SQL-624bb6a60e9643) |
|
| 18 |
|
| 19 |
## News
|
|
|
|
| 42 |
|
| 43 |
<img src="https://raw.githubusercontent.com/CycloneBoy/slm_sql/main/data/image/slmsql_framework.png" height="500" alt="slmsql_framework">
|
| 44 |
|
| 45 |
+
## How to use
|
| 46 |
+
You can use the model with the `transformers` library for Text-to-SQL tasks. Make sure you have `transformers` and `torch` installed.
|
| 47 |
+
|
| 48 |
+
```python
|
| 49 |
+
import torch
|
| 50 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 51 |
+
|
| 52 |
+
model_name = "cycloneboy/SLM-SQL-0.5B" # Or any other SLM-SQL model from the collection
|
| 53 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 54 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 55 |
+
model_name,
|
| 56 |
+
torch_dtype=torch.bfloat16,
|
| 57 |
+
device_map="auto"
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
# Example for Text-to-SQL
|
| 61 |
+
db_schema = """
|
| 62 |
+
CREATE TABLE Employee (
|
| 63 |
+
employee_id INTEGER PRIMARY KEY,
|
| 64 |
+
name TEXT,
|
| 65 |
+
department TEXT,
|
| 66 |
+
salary INTEGER
|
| 67 |
+
);
|
| 68 |
+
CREATE TABLE Department (
|
| 69 |
+
department_id INTEGER PRIMARY KEY,
|
| 70 |
+
name TEXT,
|
| 71 |
+
location TEXT
|
| 72 |
+
);
|
| 73 |
+
"""
|
| 74 |
+
question = "What are the names of employees in the 'Sales' department earning more than 50000?"
|
| 75 |
+
prompt = f"Given the database schema:
|
| 76 |
+
{db_schema}
|
| 77 |
+
|
| 78 |
+
Translate the following question to SQL: {question}"
|
| 79 |
+
|
| 80 |
+
messages = [
|
| 81 |
+
{"role": "system", "content": "You are a helpful assistant that translates natural language questions into SQL queries."},
|
| 82 |
+
{"role": "user", "content": prompt}
|
| 83 |
+
]
|
| 84 |
+
|
| 85 |
+
input_ids = tokenizer.apply_chat_template(
|
| 86 |
+
messages,
|
| 87 |
+
add_generation_prompt=True,
|
| 88 |
+
return_tensors="pt"
|
| 89 |
+
).to(model.device)
|
| 90 |
+
|
| 91 |
+
outputs = model.generate(
|
| 92 |
+
input_ids,
|
| 93 |
+
max_new_tokens=256,
|
| 94 |
+
do_sample=True,
|
| 95 |
+
temperature=0.7,
|
| 96 |
+
top_k=50,
|
| 97 |
+
top_p=0.95
|
| 98 |
+
)
|
| 99 |
+
response = tokenizer.decode(outputs[0][input_ids.shape[-1]:], skip_special_tokens=True)
|
| 100 |
+
print(response)
|
| 101 |
+
# Expected output similar to: SELECT name FROM Employee WHERE department = 'Sales' AND salary > 50000
|
| 102 |
+
```
|
| 103 |
+
|
| 104 |
### Main Results
|
| 105 |
|
| 106 |
<img src="https://raw.githubusercontent.com/CycloneBoy/slm_sql/main/data/image/slmsql_bird_result.png" height="500" alt="slm_sql_result">
|
|
|
|
| 118 |
|
| 119 |
| **Model** | Base Model | Train Method | Modelscope | HuggingFace |
|
| 120 |
|------------------------------------------|------------------------------|--------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
|
| 121 |
+
| SLM-SQL-Base-0.5B | Qwen2.5-Coder-0.5B-Instruct | SFT | [\ud83e\udd16 Modelscope](https://modelscope.cn/models/cycloneboy/SLM-SQL-Base-0.5B) | [\ud83e\udd17 HuggingFace](https://huggingface.co/cycloneboy/SLM-SQL-Base-0.5B) |
|
| 122 |
+
| SLM-SQL-0.5B | Qwen2.5-Coder-0.5B-Instruct | SFT + GRPO | [\ud83e\udd16 Modelscope](https://modelscope.cn/models/cycloneboy/SLM-SQL-0.5B) | [\ud83e\udd17 HuggingFace](https://huggingface.co/cycloneboy/SLM-SQL-0.5B) |
|
| 123 |
+
| CscSQL-Merge-Qwen2.5-Coder-0.5B-Instruct | Qwen2.5-Coder-0.5B-Instruct | SFT + GRPO | [\ud83e\udd16 Modelscope](https://modelscope.cn/models/cycloneboy/CscSQL-Merge-Qwen2.5-Coder-0.5B-Instruct) | [\ud83e\udd17 HuggingFace](https://huggingface.co/cycloneboy/CscSQL-Merge-Qwen2.5-Coder-0.5B-Instruct) |
|
| 124 |
+
| SLM-SQL-Base-1.5B | Qwen2.5-Coder-1.5B-Instruct | SFT | [\ud83e\udd16 Modelscope](https://modelscope.cn/models/cycloneboy/SLM-SQL-Base-1.5B) | [\ud83e\udd17 HuggingFace](https://huggingface.co/cycloneboy/SLM-SQL-Base-1.5B) |
|
| 125 |
+
| SLM-SQL-1.5B | Qwen2.5-Coder-1.5B-Instruct | SFT + GRPO | [\ud83e\udd16 Modelscope](https://modelscope.cn/models/cycloneboy/SLM-SQL-1.5B) | [\ud83e\udd17 HuggingFace](https://huggingface.co/cycloneboy/SLM-SQL-1.5B) |
|
| 126 |
+
| CscSQL-Merge-Qwen2.5-Coder-1.5B-Instruct | Qwen2.5-Coder-1.5B-Instruct | SFT + GRPO | [\ud83e\udd16 Modelscope](https://modelscope.cn/models/cycloneboy/CscSQL-Merge-Qwen2.5-Coder-1.5B-Instruct) | [\ud83e\udd17 HuggingFace](https://huggingface.co/cycloneboy/CscSQL-Merge-Qwen2.5-Coder-1.5B-Instruct) |
|
| 127 |
+
| SLM-SQL-Base-0.6B | Qwen3-0.6B | SFT | [\ud83e\udd16 Modelscope](https://modelscope.cn/models/cycloneboy/SLM-SQL-Base-0.6B) | [\ud83e\udd17 HuggingFace](https://huggingface.co/cycloneboy/SLM-SQL-Base-0.6B) |
|
| 128 |
+
| SLM-SQL-0.6B | Qwen3-0.6B | SFT + GRPO | [\ud83e\udd16 Modelscope](https://modelscope.cn/models/cycloneboy/SLM-SQL-0.6B) | [\ud83e\udd17 HuggingFace](https://huggingface.co/cycloneboy/SLM-SQL-0.6B) |
|
| 129 |
+
| SLM-SQL-Base-1.3B | deepseek-coder-1.3b-instruct | SFT | [\ud83e\udd16 Modelscope](https://modelscope.cn/models/cycloneboy/SLM-SQL-Base-1.3B ) | [\ud83e\udd17 HuggingFace](https://huggingface.co/cycloneboy/SLM-SQL-Base-1.3B ) |
|
| 130 |
+
| SLM-SQL-1.3B | deepseek-coder-1.3b-instruct | SFT + GRPO | [\ud83e\udd16 Modelscope](https://modelscope.cn/models/cycloneboy/SLM-SQL-1.3B ) | [\ud83e\udd17 HuggingFace](https://huggingface.co/cycloneboy/SLM-SQL-1.3B ) |
|
| 131 |
+
| SLM-SQL-Base-1B | Llama-3.2-1B-Instruct | SFT | [\ud83e\udd16 Modelscope](https://modelscope.cn/models/cycloneboy/SLM-SQL-Base-1B ) | [\ud83e\udd17 HuggingFace](https://huggingface.co/cycloneboy/SLM-SQL-Base-1B ) |
|
| 132 |
|
| 133 |
## Dataset
|
| 134 |
|
| 135 |
+
| **Dataset** | Modelscope | HuggingFace |
|
| 136 |
+
|---|---|---|
|
| 137 |
+
| SynsQL-Think-916k | [\ud83e\udd16 Modelscope](https://modelscope.cn/datasets/cycloneboy/SynsQL-Think-916k) | [\ud83e\udd17 HuggingFace](https://huggingface.co/datasets/cycloneboy/SynsQL-Think-916k) |
|
| 138 |
+
| SynsQL-Merge-Think-310k | [\ud83e\udd16 Modelscope](https://modelscope.cn/datasets/cycloneboy/SynsQL-Merge-Think-310k) | [\ud83e\udd17 HuggingFace](https://huggingface.co/datasets/cycloneboy/SynsQL-Merge-Think-310k) |
|
| 139 |
+
| bird train and dev dataset | [\ud83e\udd16 Modelscope](https://modelscope.cn/datasets/cycloneboy/bird_train) | [\ud83e\udd17 HuggingFace](https://huggingface.co/datasets/cycloneboy/bird_train) |
|
| 140 |
|
| 141 |
## TODO
|
| 142 |
|