canIjoin commited on
Commit
ffb5d86
·
1 Parent(s): eaaf9cd

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +90 -0
README.md ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: zh
3
+ widget:
4
+ - text: "江苏警方通报特斯拉冲进店铺"
5
+
6
+ ---
7
+
8
+ # Chinese RoBERTa-Base Model for NER
9
+
10
+ ## Model description
11
+
12
+ The model is used for named entity recognition. You can download the model either from the [UER-py Modelzoo page](https://github.com/dbiir/UER-py/wiki/Modelzoo) (in UER-py format), or via HuggingFace from the link [roberta-base-finetuned-cluener2020-chinese](https://huggingface.co/uer/roberta-base-finetuned-cluener2020-chinese).
13
+
14
+ ## How to use
15
+
16
+ You can use this model directly with a pipeline for token classification :
17
+
18
+ ```python
19
+ >>> from transformers import AutoModelForTokenClassification,AutoTokenizer,pipeline
20
+ >>> model = AutoModelForTokenClassification.from_pretrained('uer/roberta-base-finetuned-cluener2020-chinese')
21
+ >>> tokenizer = AutoTokenizer.from_pretrained('uer/roberta-base-finetuned-cluener2020-chinese')
22
+ >>> ner = pipeline('ner', model=model, tokenizer=tokenizer)
23
+ >>> ner("江苏警方通报特斯拉冲进店铺")
24
+ [
25
+ {'word': '江', 'score': 0.49153077602386475, 'entity': 'B-address', 'index': 1, 'start': 0, 'end': 1},
26
+ {'word': '苏', 'score': 0.6319217681884766, 'entity': 'I-address', 'index': 2, 'start': 1, 'end': 2},
27
+ {'word': '特', 'score': 0.5912262797355652, 'entity': 'B-company', 'index': 7, 'start': 6, 'end': 7},
28
+ {'word': '斯', 'score': 0.69145667552948, 'entity': 'I-company', 'index': 8, 'start': 7, 'end': 8},
29
+ {'word': '拉', 'score': 0.7054660320281982, 'entity': 'I-company', 'index': 9, 'start': 8, 'end': 9}
30
+ ]
31
+ ```
32
+
33
+ ## Training data
34
+
35
+ [CLUENER2020](https://github.com/CLUEbenchmark/CLUENER2020) is used as training data. We only use the train set of the dataset.
36
+
37
+ ## Training procedure
38
+
39
+ The model is fine-tuned by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We fine-tune five epochs with a sequence length of 512 on the basis of the pre-trained model [chinese_roberta_L-12_H-768](https://huggingface.co/uer/chinese_roberta_L-12_H-768). At the end of each epoch, the model is saved when the best performance on development set is achieved.
40
+
41
+ ```
42
+ python3 run_ner.py --pretrained_model_path models/cluecorpussmall_roberta_base_seq512_model.bin-250000 \
43
+ --vocab_path models/google_zh_vocab.txt \
44
+ --train_path datasets/cluener2020/train.tsv \
45
+ --dev_path datasets/cluener2020/dev.tsv \
46
+ --label2id_path datasets/cluener2020/label2id.json \
47
+ --output_model_path models/cluener2020_ner_model.bin \
48
+ --learning_rate 3e-5 --epochs_num 5 --batch_size 32 --seq_length 512
49
+ ```
50
+
51
+ Finally, we convert the pre-trained model into Huggingface's format:
52
+
53
+ ```
54
+ python3 scripts/convert_bert_token_classification_from_uer_to_huggingface.py --input_model_path models/cluener2020_ner_model.bin \
55
+ --output_model_path pytorch_model.bin \
56
+ --layers_num 12
57
+ ```
58
+
59
+ ### BibTeX entry and citation info
60
+
61
+ ```
62
+ @article{devlin2018bert,
63
+ title={BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding},
64
+ author={Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina},
65
+ journal={arXiv preprint arXiv:1810.04805},
66
+ year={2018}
67
+ }
68
+
69
+ @article{liu2019roberta,
70
+ title={Roberta: A robustly optimized bert pretraining approach},
71
+ author={Liu, Yinhan and Ott, Myle and Goyal, Naman and Du, Jingfei and Joshi, Mandar and Chen, Danqi and Levy, Omer and Lewis, Mike and Zettlemoyer, Luke and Stoyanov, Veselin},
72
+ journal={arXiv preprint arXiv:1907.11692},
73
+ year={2019}
74
+ }
75
+
76
+ @article{xu2020cluener2020,
77
+ title={CLUENER2020: Fine-grained Name Entity Recognition for Chinese},
78
+ author={Xu, Liang and Dong, Qianqian and Yu, Cong and Tian, Yin and Liu, Weitang and Li, Lu and Zhang, Xuanwei},
79
+ journal={arXiv preprint arXiv:2001.04351},
80
+ year={2020}
81
+ }
82
+
83
+ @article{zhao2019uer,
84
+ title={UER: An Open-Source Toolkit for Pre-training Models},
85
+ author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong},
86
+ journal={EMNLP-IJCNLP 2019},
87
+ pages={241},
88
+ year={2019}
89
+ }
90
+ ```