# Copyright (c) Alibaba, Inc. and its affiliates. import os import re import sys import time from datetime import datetime from functools import partial from typing import Type import gradio as gr import json import torch from json import JSONDecodeError from transformers.utils import is_torch_cuda_available, is_torch_npu_available from swift.llm import EvalArguments from swift.ui.base import BaseUI from swift.ui.llm_eval.eval import Eval from swift.ui.llm_eval.model import Model from swift.ui.llm_eval.runtime import EvalRuntime from swift.utils import get_device_count class LLMEval(BaseUI): group = 'llm_eval' sub_ui = [Model, Eval, EvalRuntime] cmd = 'eval' locale_dict = { 'llm_eval': { 'label': { 'zh': 'LLM评测', 'en': 'LLM evaluation', } }, 'more_params': { 'label': { 'zh': '更多参数', 'en': 'More params' }, 'info': { 'zh': '以json格式或--xxx xxx命令行格式填入', 'en': 'Fill in with json format or --xxx xxx cmd format' } }, 'evaluate': { 'value': { 'zh': '开始评测', 'en': 'Begin Evaluation' }, }, 'gpu_id': { 'label': { 'zh': '选择可用GPU', 'en': 'Choose GPU' }, 'info': { 'zh': '选择训练使用的GPU号,如CUDA不可用只能选择CPU', 'en': 'Select GPU to train' } }, } choice_dict = BaseUI.get_choices_from_dataclass(EvalArguments) default_dict = BaseUI.get_default_value_from_dataclass(EvalArguments) arguments = BaseUI.get_argument_names(EvalArguments) @classmethod def do_build_ui(cls, base_tab: Type['BaseUI']): with gr.TabItem(elem_id='llm_eval', label=''): default_device = 'cpu' device_count = get_device_count() if device_count > 0: default_device = '0' with gr.Blocks(): Model.build_ui(base_tab) Eval.build_ui(base_tab) EvalRuntime.build_ui(base_tab) with gr.Row(): gr.Textbox(elem_id='more_params', lines=4, scale=20) gr.Button(elem_id='evaluate', scale=2, variant='primary') gr.Dropdown( elem_id='gpu_id', multiselect=True, choices=[str(i) for i in range(device_count)] + ['cpu'], value=default_device, scale=8) cls.element('evaluate').click( cls.eval_model, list(base_tab.valid_elements().values()), [cls.element('runtime_tab'), cls.element('running_tasks')]) base_tab.element('running_tasks').change( partial(EvalRuntime.task_changed, base_tab=base_tab), [base_tab.element('running_tasks')], list(base_tab.valid_elements().values()) + [cls.element('log')]) EvalRuntime.element('kill_task').click( EvalRuntime.kill_task, [EvalRuntime.element('running_tasks')], [EvalRuntime.element('running_tasks')] + [EvalRuntime.element('log')], ) @classmethod def eval(cls, *args): eval_args = cls.get_default_value_from_dataclass(EvalArguments) kwargs = {} kwargs_is_list = {} other_kwargs = {} more_params = {} more_params_cmd = '' keys = cls.valid_element_keys() for key, value in zip(keys, args): compare_value = eval_args.get(key) compare_value_arg = str(compare_value) if not isinstance(compare_value, (list, dict)) else compare_value compare_value_ui = str(value) if not isinstance(value, (list, dict)) else value if key in eval_args and compare_value_ui != compare_value_arg and value: if isinstance(value, str) and re.fullmatch(cls.int_regex, value): value = int(value) elif isinstance(value, str) and re.fullmatch(cls.float_regex, value): value = float(value) elif isinstance(value, str) and re.fullmatch(cls.bool_regex, value): value = True if value.lower() == 'true' else False kwargs[key] = value if not isinstance(value, list) else ' '.join(value) kwargs_is_list[key] = isinstance(value, list) or getattr(cls.element(key), 'is_list', False) else: other_kwargs[key] = value if key == 'more_params' and value: try: more_params = json.loads(value) except (JSONDecodeError or TypeError): more_params_cmd = value kwargs.update(more_params) model = kwargs.get('model') if model and os.path.exists(model) and os.path.exists(os.path.join(model, 'args.json')): kwargs['ckpt_dir'] = kwargs.pop('model') eval_args = EvalArguments( **{ key: value.split(' ') if key in kwargs_is_list and kwargs_is_list[key] else value for key, value in kwargs.items() }) params = '' sep = f'{cls.quote} {cls.quote}' for e in kwargs: if isinstance(kwargs[e], list): params += f'--{e} {cls.quote}{sep.join(kwargs[e])}{cls.quote} ' elif e in kwargs_is_list and kwargs_is_list[e]: all_args = [arg for arg in kwargs[e].split(' ') if arg.strip()] params += f'--{e} {cls.quote}{sep.join(all_args)}{cls.quote} ' else: params += f'--{e} {cls.quote}{kwargs[e]}{cls.quote} ' params += more_params_cmd + ' ' devices = other_kwargs['gpu_id'] devices = [d for d in devices if d] assert (len(devices) == 1 or 'cpu' not in devices) gpus = ','.join(devices) cuda_param = '' if gpus != 'cpu': if is_torch_npu_available(): cuda_param = f'ASCEND_RT_VISIBLE_DEVICES={gpus}' elif is_torch_cuda_available(): cuda_param = f'CUDA_VISIBLE_DEVICES={gpus}' else: cuda_param = '' now = datetime.now() time_str = f'{now.year}{now.month}{now.day}{now.hour}{now.minute}{now.second}' file_path = f'output/{eval_args.model_type}-{time_str}' if not os.path.exists(file_path): os.makedirs(file_path, exist_ok=True) log_file = os.path.join(os.getcwd(), f'{file_path}/run_eval.log') eval_args.log_file = log_file params += f'--log_file "{log_file}" ' params += '--ignore_args_error true ' if sys.platform == 'win32': if cuda_param: cuda_param = f'set {cuda_param} && ' run_command = f'{cuda_param}start /b swift eval {params} > {log_file} 2>&1' else: run_command = f'{cuda_param} nohup swift eval {params} > {log_file} 2>&1 &' return run_command, eval_args, log_file @classmethod def eval_model(cls, *args): run_command, eval_args, log_file = cls.eval(*args) os.system(run_command) time.sleep(2) return gr.update(open=True), EvalRuntime.refresh_tasks(log_file)