File size: 40,887 Bytes
7feac49 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 |
# Copyright (c) Alibaba, Inc. and its affiliates.
import os
import sys
import types
from typing import List, Optional, Tuple
import safetensors
import torch
import torch.nn.functional as F
import transformers
from packaging import version
from peft import PeftModel
from torch.utils.data import DataLoader
from transformers import PreTrainedModel, trainer
from transformers.modeling_utils import unwrap_model
from swift.utils import get_logger, torchacc_trim_graph, use_torchacc
logger = get_logger()
# DataLoader
def get_bucket_sizes(max_length: int) -> List[int]:
"""Get the bucket sizes for TorchAcc.
You can set the environment variable TORCHACC_DATA_BUCKETS to specify
the bucket sizes. If not set, we use a normal distribution bucketing with
8 buckets.
"""
padding_p_base = 2
if os.getenv('TORCHACC_DATA_BUCKETS') is not None:
bucket_sizes = [int(x) for x in os.getenv('TORCHACC_DATA_BUCKETS').split(',')]
bucket_sizes.append(max_length)
else:
if os.getenv('TORCHACC_CACHE_PATH') is not None: # padding strategy when persistent cache is enabled
padding_p_base = 1.4
padding_p_base = os.getenv('TORCHACC_PADDING_P_BASE', padding_p_base)
try:
padding_p_base = float(padding_p_base)
except ValueError as e:
logger.error(f'Expect TORCHACC_PADDINF_P_BASE to be a float number, but encountered {padding_p_base}')
raise e
bucket_sizes = [16, 32, 48, 64, 96, 128]
base_size = 256
while base_size < max_length:
bucket_sizes.append((int(base_size) + 127) // 128 * 128)
base_size *= padding_p_base
bucket_sizes.append(max_length)
return bucket_sizes
def _get_closet_bucket(bucket_sizes, data_length):
"""Select the one from bucket_sizes that is closest in distance to
data_length. This is required for TorchAcc.
"""
closest_length = sys.maxsize
for b in bucket_sizes:
if b == data_length or ((b < closest_length) and (b > data_length)):
closest_length = b
if closest_length == sys.maxsize:
bucket_sizes.append(data_length)
closest_length = data_length
return closest_length
def pad_and_split_batch(padding_to, input_ids, attention_mask, labels, loss_scale, max_length, tokenizer, rank,
world_size, padding_right):
if padding_to is None:
longest_len = input_ids.shape[-1]
bucket_sizes = get_bucket_sizes(max_length)
bucket_data_length = _get_closet_bucket(bucket_sizes, longest_len)
padding_length = bucket_data_length - input_ids.shape[1]
pad_tuple = (0, padding_length) if padding_right else (padding_length, 0)
input_ids = F.pad(input_ids, pad_tuple, 'constant', tokenizer.pad_token_id)
attention_mask = F.pad(attention_mask, pad_tuple, 'constant', 0)
if loss_scale:
loss_scale = F.pad(loss_scale, pad_tuple, 'constant', 0.)
labels = F.pad(labels, pad_tuple, 'constant', -100)
# manually split the batch to different DP rank.
batch_size = input_ids.shape[0] // world_size
if batch_size > 0:
start = rank * batch_size
end = (rank + 1) * batch_size
input_ids = input_ids[start:end, :]
attention_mask = attention_mask[start:end, :]
labels = labels[start:end, :]
if loss_scale:
loss_scale = loss_scale[start:end, :]
return input_ids, attention_mask, labels, loss_scale
def ta_train_dataloader(train_dataset, data_collator, sampler, args, batch_size):
# patch skip_first_batches for customized dataloader.
def acc_skip_first_batches(dataloader, num_batches=0):
from accelerate.data_loader import SkipBatchSampler
batch_sampler = SkipBatchSampler(dataloader._loader.batch_sampler, skip_batches=num_batches)
try:
dataset = dataloader.dataset
except AttributeError:
dataset = dataloader._loader.dataset
dataloader_params = {
'collate_fn': data_collator,
'num_workers': args.dataloader_num_workers,
'pin_memory': args.dataloader_pin_memory,
'persistent_workers': args.dataloader_persistent_workers,
}
if not isinstance(train_dataset, torch.utils.data.IterableDataset):
dataloader_params['batch_sampler'] = batch_sampler
dataloader_params['worker_init_fn'] = trainer.seed_worker
return ta.AsyncLoader(DataLoader(dataset, **dataloader_params), args.device)
trainer.skip_first_batches = acc_skip_first_batches
# dataloader for TorchAcc.
import torchacc as ta
dataloader_params = {
'batch_size': batch_size,
'collate_fn': data_collator,
'num_workers': args.dataloader_num_workers,
'pin_memory': args.dataloader_pin_memory,
'persistent_workers': args.dataloader_persistent_workers,
}
if not isinstance(train_dataset, torch.utils.data.IterableDataset):
dataloader_params['sampler'] = sampler
dataloader_params['drop_last'] = args.dataloader_drop_last
dataloader_params['worker_init_fn'] = trainer.seed_worker
return ta.AsyncLoader(DataLoader(train_dataset, **dataloader_params), args.device)
def ta_eval_dataloader(eval_dataset, data_collator, sampler, args):
import torchacc as ta
dataloader_params = {
'batch_size': args.eval_batch_size,
'collate_fn': data_collator,
'num_workers': args.dataloader_num_workers,
'pin_memory': args.dataloader_pin_memory,
'persistent_workers': args.dataloader_persistent_workers,
}
if not isinstance(eval_dataset, torch.utils.data.IterableDataset):
dataloader_params['sampler'] = sampler
dataloader_params['drop_last'] = args.dataloader_drop_last
return ta.AsyncLoader(DataLoader(eval_dataset, **dataloader_params), args.device)
def ta_test_dataloader(test_dataset, data_collator, sampler, args):
import torchacc as ta
dataloader_params = {
'batch_size': args.eval_batch_size,
'collate_fn': data_collator,
'num_workers': args.dataloader_num_workers,
'pin_memory': args.dataloader_pin_memory,
'persistent_workers': args.dataloader_persistent_workers,
}
if not isinstance(test_dataset, torch.utils.data.IterableDataset):
dataloader_params['sampler'] = sampler
dataloader_params['drop_last'] = args.dataloader_drop_last
# We use the same batch_size as for eval.
return ta.AsyncLoader(DataLoader(test_dataset, **dataloader_params), args.device)
# Save/load checkpoint
def ta_save_optimizer_and_scheduler(optimizer, lr_scheduler, output_dir):
import torch_xla.core.xla_model as xm
xm.rendezvous('saving_optimizer_states')
xm.save(optimizer.state_dict(), os.path.join(output_dir, f'optimizer_{xm.get_ordinal()}.pt'), master_only=False)
xm.save(lr_scheduler.state_dict(), os.path.join(output_dir, f'scheduler_{xm.get_ordinal()}.pt'), master_only=False)
xm.rendezvous('saving_optimizer_states_done')
def ta_load_optimizer_and_scheduler(optimizer, lr_scheduler, checkpoint, device):
import torch_xla.core.xla_model as xm
optimizer_state = torch.load(os.path.join(checkpoint, f'optimizer_{xm.get_ordinal()}.pt'), map_location='cpu')
lr_scheduler_state = torch.load(os.path.join(checkpoint, f'scheduler_{xm.get_ordinal()}.pt'), map_location='cpu')
xm.send_cpu_data_to_device(optimizer_state, device)
xm.send_cpu_data_to_device(lr_scheduler_state, device)
optimizer.load_state_dict(optimizer_state)
lr_scheduler.load_state_dict(lr_scheduler_state)
return optimizer, lr_scheduler
def save_ta_ddp_checkpoint(self_model, tokenizer, args, output_dir: Optional[str] = None):
output_dir = output_dir if output_dir is not None else args.output_dir
import torch_xla.core.xla_model as xm
model = self_model
if xm.is_master_ordinal(local=False):
os.makedirs(output_dir, exist_ok=True)
torch.save(args, os.path.join(output_dir, 'training_args.bin'))
xm.mark_step()
# Save a trained model and configuration using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`
supported_classes = (PreTrainedModel, PeftModel)
if not isinstance(model, supported_classes):
if isinstance(unwrap_model(model), supported_classes):
unwrap_model(model).save_pretrained(
output_dir,
is_main_process=args.should_save,
state_dict=xm._maybe_convert_to_cpu(model.state_dict()),
save_function=xm.save,
safe_serialization=args.save_safetensors,
)
else:
logger.info('Trainer.model is not a `PreTrainedModel`, only saving its state dict.')
state_dict = xm._maybe_convert_to_cpu(model.state_dict())
if args.save_safetensors:
safetensors.torch.save_file(state_dict, os.path.join(output_dir, 'model.safetensors'))
else:
torch.save(state_dict, os.path.join(output_dir, 'pytorch_model.bin'))
else:
model.save_pretrained(
output_dir,
is_main_process=args.should_save,
save_function=xm.save,
safe_serialization=args.save_safetensors,
state_dict=xm._maybe_convert_to_cpu(model.state_dict()))
if tokenizer is not None and args.should_save:
tokenizer.save_pretrained(output_dir)
def save_ta_fsdp_checkpoint(self_model, tokenizer, args, output_dir):
import torch_xla.core.xla_model as xm
from torch_xla.distributed.fsdp import consolidate_sharded_model_checkpoints
xm.mark_step()
if xm.is_master_ordinal(local=False):
os.makedirs(output_dir, exist_ok=True)
torch.save(args, os.path.join(output_dir, 'training_args.bin'))
supported_classes = (PreTrainedModel, PeftModel)
model = self_model._get_underlay_model().module.module
unwrapped_model = unwrap_model(model)
xm.rendezvous('saving_checkpoint')
ckpt = {
'model': self_model._get_underlay_model().state_dict(),
'shard_metadata': self_model._get_underlay_model().get_shard_metadata(),
}
if isinstance(model, PeftModel):
ckpt_path = os.path.join(output_dir, f'rank{args.process_index}-of-{args.global_world_size}-adapter_model.bin')
else:
ckpt_path = os.path.join(output_dir, f'rank{args.process_index}-of-{args.global_world_size}-pytorch_model.bin')
xm.save(ckpt, ckpt_path, master_only=False)
# Make sure all ranks have saved checkpoints
xm.rendezvous('save_full_checkpoints')
if tokenizer is not None and args.should_save:
tokenizer.save_pretrained(output_dir, is_main_process=xm.is_master_ordinal(local=False), save_function=xm.save)
# rank 0 consolidates and saves the whole checkpoint.
if xm.is_master_ordinal(local=False):
if isinstance(model, PeftModel):
ckpt_suffix = 'rank*-of-*-adapter_model.bin'
else:
ckpt_suffix = 'rank*-of-*-pytorch_model.bin'
full_state_dict, _ = consolidate_sharded_model_checkpoints(
ckpt_prefix=os.path.join(output_dir, ''), ckpt_suffix=ckpt_suffix, save_model=False)
if isinstance(unwrapped_model, supported_classes):
unwrapped_model.save_pretrained(
output_dir,
state_dict=full_state_dict,
save_function=xm.save,
safe_serialization=args.save_safetensors,
)
else:
logger.info('Trainer.model is not a `PreTrainedModel`, only saving its state dict.')
if args.save_safetensors:
safetensors.torch.save_file(full_state_dict, os.path.join(output_dir, 'model.safetensors'))
else:
torch.save(full_state_dict, os.path.join(output_dir, 'pytorch_model.bin'))
xm.rendezvous('ckpt_consolidation')
# delete the sharded checkpoint.
os.remove(ckpt_path)
def ta_trim_graph():
if use_torchacc() and torchacc_trim_graph():
import torchacc as ta
ta.mark_step()
# Model patch
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., :x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2:]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`):
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
used to pass offsetted position ids when working with a KV-cache.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
if position_ids is not None:
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
else:
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
def patch_acc_model(args, model):
if not args.use_flash_attn:
logger.warn('Currently use flash attn for torchacc.')
if args.model_type.startswith('qwen1half') or args.model_type.startswith('qwen2'):
model = patch_qwen2_model(model)
elif args.model_type.startswith('qwen'):
import torchacc as ta
model = ta.patch_qwen_model(model)
elif args.model_type.startswith('baichuan'):
model = patch_baichuan_model(model)
elif args.model_type.startswith('llama') or args.model_type.startswith('yi'):
model = patch_llama_model(model)
elif args.model_type.startswith('chatglm'):
model = patah_chatglm_model(model)
return model
def patch_llama_model(model):
def update_causal_mask(self, *args, **kwargs):
# attention_mask is not supported in TorchAcc.
return None
def llama_attn_forward(self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
from torchacc.ops import flash_attn_varlen_xla
import einops
bsz, q_len, _ = hidden_states.size()
query_states = (self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2))
key_states = (
self.k_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2))
value_states = (
self.v_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2))
kv_seq_len = key_states.shape[-2]
assert past_key_value is None, 'past_key_value is not supported'
if version.parse(transformers.__version__) >= version.parse('4.36'):
cos, sin = self.rotary_emb(value_states, position_ids)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
else:
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
assert not output_attentions, 'output_attentions is not supported'
if past_key_value is not None:
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
past_key_value = (key_states, value_states) if use_cache else None
# See https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/flash_attention.py
# if attention_mask is not None:
# value_states = value_states * attention_mask.unsqueeze(1).unsqueeze(-1)
q = einops.rearrange(query_states, 'b h s ... -> (b s) h ...')
k = einops.rearrange(key_states, 'b h s ... -> (b s) h ...')
v = einops.rearrange(value_states, 'b h s ... -> (b s) h ...')
max_s = q_len
cu_q_lens = torch.arange(0, (bsz + 1) * q_len, step=q_len, dtype=torch.int32, device=q.device)
output = flash_attn_varlen_xla(
q, k, v, cu_q_lens, cu_q_lens, max_s, max_s, 0.0, softmax_scale=None, causal=True)
output = einops.rearrange(output, '(b s) ... -> b s ...', b=bsz)
return self.o_proj(einops.rearrange(output, 'b s h d -> b s (h d)')), None, past_key_value
for layer in model.model.layers:
layer.self_attn.forward = types.MethodType(llama_attn_forward, layer.self_attn)
if version.parse(transformers.__version__) >= version.parse('4.38'):
model.model._update_causal_mask = types.MethodType(update_causal_mask, model.model)
return model
def patah_chatglm_model(model):
def chatglm_apply_rotary_pos_emb(x: torch.Tensor, rope_cache: torch.Tensor) -> torch.Tensor:
# x: [sq, b, np, hn]
sq, _, np, _ = x.size(0), x.size(1), x.size(2), x.size(3)
rot_dim = rope_cache.shape[-2] * 2
x, x_pass = x[..., :rot_dim], x[..., rot_dim:]
# truncate to support variable sizes
rope_cache = rope_cache[:sq]
xshaped = x.reshape(sq, -1, np, rot_dim // 2, 2)
rope_cache = rope_cache.view(sq, -1, 1, xshaped.size(3), 2)
x_out2 = torch.stack(
[
xshaped[..., 0] * rope_cache[..., 0] - xshaped[..., 1] * rope_cache[..., 1],
xshaped[..., 1] * rope_cache[..., 0] + xshaped[..., 0] * rope_cache[..., 1],
],
-1,
)
x_out2 = x_out2.flatten(3)
return torch.cat((x_out2, x_pass), dim=-1)
def chatglm_attn_forward(self,
hidden_states,
attention_mask,
rotary_pos_emb,
kv_cache=None,
use_cache=True,
**kwargs):
# hidden_states: [sq, b, h]
# =================================================
# Pre-allocate memory for key-values for inference.
# =================================================
# =====================
# Query, Key, and Value
# =====================
# Attention heads [sq, b, h] --> [sq, b, (np * 3 * hn)]
mixed_x_layer = self.query_key_value(hidden_states)
if self.multi_query_attention:
(query_layer, key_layer, value_layer) = mixed_x_layer.split(
[
self.num_attention_heads_per_partition * self.hidden_size_per_attention_head,
self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
],
dim=-1,
)
query_layer = query_layer.view(query_layer.size()[:-1] + (self.num_attention_heads_per_partition,
self.hidden_size_per_attention_head))
key_layer = key_layer.view(key_layer.size()[:-1] + (self.num_multi_query_groups_per_partition,
self.hidden_size_per_attention_head))
value_layer = value_layer.view(value_layer.size()[:-1] + (self.num_multi_query_groups_per_partition,
self.hidden_size_per_attention_head))
else:
new_tensor_shape = mixed_x_layer.size()[:-1] + (self.num_attention_heads_per_partition,
3 * self.hidden_size_per_attention_head)
mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)
# [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn]
(query_layer, key_layer, value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3)
# apply relative positional encoding (rotary embedding)
if rotary_pos_emb is not None:
query_layer = chatglm_apply_rotary_pos_emb(query_layer, rotary_pos_emb)
key_layer = chatglm_apply_rotary_pos_emb(key_layer, rotary_pos_emb)
# adjust key and value for inference
if kv_cache is not None:
cache_k, cache_v = kv_cache
key_layer = torch.cat((cache_k, key_layer), dim=0)
value_layer = torch.cat((cache_v, value_layer), dim=0)
if use_cache:
kv_cache = (key_layer, value_layer)
else:
kv_cache = None
if self.multi_query_attention:
key_layer = key_layer.unsqueeze(-2)
key_layer = key_layer.expand(
-1, -1, -1, self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, -1)
key_layer = key_layer.contiguous().view(key_layer.size()[:2] + (self.num_attention_heads_per_partition,
self.hidden_size_per_attention_head))
value_layer = value_layer.unsqueeze(-2)
value_layer = value_layer.expand(
-1, -1, -1, self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, -1)
value_layer = value_layer.contiguous().view(value_layer.size()[:2]
+ (self.num_attention_heads_per_partition,
self.hidden_size_per_attention_head))
# ==================================
# core attention computation
# ==================================
from torchacc.ops import flash_attn_varlen_qkvpacked_xla
import einops
query_layer, key_layer, value_layer = [k.permute(1, 2, 0, 3) for k in [query_layer, key_layer, value_layer]]
bsz, _, q_len, _ = query_layer.size()
qkv = torch.stack([query_layer, key_layer, value_layer], dim=2)
qkv = qkv.transpose(1, 3)
qkv = einops.rearrange(qkv, 'b s ... -> (b s) ...')
cu_q_lens = torch.arange(0, (bsz + 1) * q_len, step=q_len, dtype=torch.int32, device=qkv.device)
context_layer = flash_attn_varlen_qkvpacked_xla(
qkv, cu_q_lens, q_len, dropout_p=0.0, softmax_scale=None, causal=True)
context_layer = einops.rearrange(context_layer, '(b s) ... -> b s ...', b=bsz)
context_layer = context_layer.permute(1, 0, 2, 3)
new_context_layer_shape = context_layer.size()[:-2] + (self.core_attention.hidden_size_per_partition, )
context_layer = context_layer.reshape(*new_context_layer_shape)
# =================
# Output. [sq, b, h]
# =================
output = self.dense(context_layer)
return output, kv_cache
def torchacc_swiglu(x):
x = torch.chunk(x, 2, dim=-1)
return F.silu(x[0]).to(x[0].dtype) * x[1]
# patch attention
for layer in model.transformer.encoder.layers:
layer.self_attention.forward = types.MethodType(chatglm_attn_forward, layer.self_attention)
layer.mlp.activation_func = torchacc_swiglu
return model
def patch_baichuan_model(model):
def baichuan_attn_forward(self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
**kwargs) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
import einops
bsz, q_len, _ = hidden_states.size()
proj = self.W_pack(hidden_states)
proj = (proj.unflatten(-1, (3, self.hidden_size)).unsqueeze(0).transpose(0, -2).squeeze(-2))
query_states = (proj[0].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2))
key_states = (proj[1].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2))
value_states = (proj[2].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2))
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
if past_key_value is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
past_key_value = (key_states, value_states) if use_cache else None
from torchacc.ops import flash_attn_varlen_xla
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
q, k, v = [einops.rearrange(x, 'b s ... -> (b s) ...') for x in [query_states, key_states, value_states]]
cu_q_lens = torch.arange(0, (bsz + 1) * q_len, step=q_len, dtype=torch.int32, device=q.device)
output = flash_attn_varlen_xla(
q, k, v, cu_q_lens, cu_q_lens, q_len, q_len, 0.0, softmax_scale=None, causal=True)
output = einops.rearrange(output, '(b s) ... -> b s ...', b=bsz)
output = self.o_proj(einops.rearrange(output, 'b s h d -> b s (h d)'))
return output, None, past_key_value
for layer in model.base_model.layers:
layer.self_attn.forward = types.MethodType(baichuan_attn_forward, layer.self_attn)
return model
def patch_qwen2_model(model):
def update_causal_mask(self, *args, **kwargs):
# attention_mask is not supported in TorchAcc.
return None
def qwen2_attn_forward(
self,
hidden_states,
attention_mask=None,
position_ids=None,
past_key_value=None,
output_attentions=False,
use_cache=False,
cache_position=None,
position_embeddings=None,
**kwargs,
):
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
if self.layer_idx is None:
raise ValueError(
f'The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} '
'for auto-regressive decoding with k/v caching, please make sure to initialize the attention class '
'with a layer index.')
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
# Because the input can be padded, the absolute sequence length depends on the max position id.
# rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
rotary_seq_len = kv_seq_len + 1
if version.parse(transformers.__version__) >= version.parse('4.45'):
if position_embeddings is None:
cos, sin = self.rotary_emb(value_states, position_ids)
else:
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
else:
cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
dropout_rate = 0.0 if not self.training else self.attention_dropout
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
# therefore the input hidden states gets silently casted in float32. Hence, we need
# cast them back in float16 just to be sure everything works as expected.
input_dtype = query_states.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
elif hasattr(self.config, '_pre_quantization_dtype'):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
# Reshape to the expected shape for Flash Attention
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
from torchacc.ops import flash_attn_varlen_xla
import einops
q, k, v = [einops.rearrange(x, 'b s ... -> (b s) ...') for x in [query_states, key_states, value_states]]
cu_q_lens = torch.arange(0, (bsz + 1) * q_len, step=q_len, dtype=torch.int32, device=q.device)
attn_output = flash_attn_varlen_xla(
q, k, v, cu_q_lens, cu_q_lens, q_len, q_len, dropout_rate, softmax_scale=None, causal=True)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
def qwen2_forward(self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError('You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time')
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
raise ValueError('You have to specify either decoder_input_ids or decoder_inputs_embeds')
if self.gradient_checkpointing and self.training:
if use_cache:
use_cache = False
past_key_values_length = 0
if use_cache:
use_legacy_cache = not isinstance(past_key_values, Cache)
if use_legacy_cache:
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
past_key_values_length = past_key_values.get_usable_length(seq_length)
if position_ids is None:
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device)
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
else:
position_ids = position_ids.view(-1, seq_length).long()
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
hidden_states = inputs_embeds
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states, )
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_self_attns += (layer_outputs[1], )
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states, )
next_cache = None
if use_cache:
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
from transformers.modeling_outputs import BaseModelOutputWithPast
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
for layer in model.model.layers:
layer.self_attn.forward = types.MethodType(qwen2_attn_forward, layer.self_attn)
if version.parse(transformers.__version__) >= version.parse('4.43'):
model.model._update_causal_mask = types.MethodType(update_causal_mask, model.model)
else:
model.model.forward = types.MethodType(qwen2_forward, model.model)
return model
def patch_clip_grad_norm(accelerator):
from accelerate.utils import DistributedType
from accelerate.optimizer import AcceleratedOptimizer
import torch_xla.core.xla_model as xm
def clip_grad_norm_(self, parameters, max_norm, norm_type=2):
"""
Should be used in place of `torch.nn.utils.clip_grad_norm_`.
Returns:
`torch.Tensor`: Total norm of the parameter gradients (viewed as a single vector).
Example:
```python
>>> from accelerate import Accelerator
>>> accelerator = Accelerator(gradient_accumulation_steps=2)
>>> dataloader, model, optimizer, scheduler = accelerator.prepare(dataloader, model, optimizer, scheduler)
>>> for input, target in dataloader:
... optimizer.zero_grad()
... output = model(input)
... loss = loss_func(output, target)
... accelerator.backward(loss)
... if accelerator.sync_gradients:
... accelerator.clip_grad_norm_(model.parameters(), max_grad_norm)
... optimizer.step()
```
"""
if self.distributed_type == DistributedType.FSDP:
self.unscale_gradients()
parameters = [p for p in parameters]
for model in self._models:
if parameters == [p for p in model.parameters()]:
return model.clip_grad_norm_(max_norm, norm_type)
elif self.distributed_type == DistributedType.DEEPSPEED:
# `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed
# We cannot return the gradient norm because DeepSpeed does it.
return None
elif self.distributed_type == DistributedType.XLA:
# Reduce gradients first for XLA
for acc_opt in self._optimizers:
if not acc_opt.gradient_state.is_xla_gradients_synced:
opt = acc_opt
while isinstance(opt, AcceleratedOptimizer):
opt = opt.optimizer
gradients = xm._fetch_gradients(opt)
# Use xm.all_reduce to perform an in-place all-reduce. Recursive all-reduce each tensor
# one by one in self.reduce is non-inplace.
xm.all_reduce('sum', gradients, scale=1.0 / self.num_processes)
# Set is_xla_gradients_synced to True to avoid all-reduce twice in the AcceleratedOptimizer step.
acc_opt.gradient_state.is_xla_gradients_synced = True
if os.environ.get('ACCELERATE_USE_FSDP', 'false') == 'true':
self.unscale_gradients()
parameters = [p for p in parameters]
for model in self._models:
if parameters == [p for p in model.parameters()]:
return model._get_underlay_model().clip_grad_norm_(max_norm, norm_type)
self.unscale_gradients()
return torch.nn.utils.clip_grad_norm_(parameters, max_norm, norm_type=norm_type)
# TODO(baole): This should be removed once accelerate is updated.
accelerator.clip_grad_norm_ = types.MethodType(clip_grad_norm_, accelerator)
return accelerator
def ta_accelerate(model,
fsdp_num,
layer_cls_name,
bf16=True,
fp16=False,
gradient_checkpointing=True,
fsdp_flatten_parameters=False):
""" accelerate LLM training using TorchAcc(only available internally).
"""
import torchacc as ta
assert layer_cls_name is not None
def get_ta_config():
config = ta.Config()
config.compute.fp16 = fp16
config.compute.bf16 = bf16
config.memory.gc = gradient_checkpointing
if config.memory.gc:
config.memory.gc_cls = {layer_cls_name}
config.dist.fsdp.size = fsdp_num
config.dist.fsdp.wrap_layer_cls = {layer_cls_name}
config.dist.fsdp.flatten_parameters = fsdp_flatten_parameters
config.dist.dp.size = 1
if fsdp_num > 1:
os.environ['ACCELERATE_USE_FSDP'] = 'true'
return config
ta_config = get_ta_config()
model = ta.accelerate(model, config=ta_config)
return model
|