Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from PIL import Image
|
| 3 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
| 4 |
+
import torch
|
| 5 |
+
|
| 6 |
+
# Load model and processor
|
| 7 |
+
@st.cache_resource
|
| 8 |
+
def load_model():
|
| 9 |
+
model_name = "your-huggingface-username/your-model-name"
|
| 10 |
+
processor = BlipProcessor.from_pretrained(model_name)
|
| 11 |
+
model = BlipForConditionalGeneration.from_pretrained(model_name)
|
| 12 |
+
return processor, model
|
| 13 |
+
|
| 14 |
+
processor, model = load_model()
|
| 15 |
+
|
| 16 |
+
# Streamlit UI
|
| 17 |
+
st.title("Cartoon Caption Generator 🖼️📜")
|
| 18 |
+
st.write("Upload a cartoon image and get a funny caption!")
|
| 19 |
+
|
| 20 |
+
uploaded_file = st.file_uploader("Upload a Cartoon Image", type=["jpg", "png", "jpeg"])
|
| 21 |
+
|
| 22 |
+
if uploaded_file is not None:
|
| 23 |
+
image = Image.open(uploaded_file).convert("RGB")
|
| 24 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
| 25 |
+
|
| 26 |
+
# Preprocess and generate caption
|
| 27 |
+
inputs = processor(images=image, return_tensors="pt")
|
| 28 |
+
with torch.no_grad():
|
| 29 |
+
generated_ids = model.generate(**inputs)
|
| 30 |
+
caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 31 |
+
|
| 32 |
+
st.subheader("Generated Caption:")
|
| 33 |
+
st.write(f"💬 {caption}")
|