Zack Zhiyuan Li
commited on
Commit
·
668e58f
1
Parent(s):
c8f6ef0
add leaderboard
Browse files
README.md
CHANGED
|
@@ -20,6 +20,7 @@ language:
|
|
| 20 |
- <a href="https://www.nexa4ai.com/" target="_blank">Nexa AI Website</a>
|
| 21 |
- <a href="https://github.com/NexaAI/octopus-v4" target="_blank">Octopus-v4 Github</a>
|
| 22 |
- <a href="https://arxiv.org/abs/2404.19296" target="_blank">ArXiv</a>
|
|
|
|
| 23 |
- <a href="https://graph.nexa4ai.com/" target="_blank">Graph demo</a>
|
| 24 |
</p>
|
| 25 |
|
|
@@ -118,6 +119,7 @@ We leverage the latest Language Large Models for a variety of domains. Below is
|
|
| 118 |
| `AdaptLLM/law-chat` | Law | `international_law`, `jurisprudence`, `professional_law` |
|
| 119 |
| `meta-llama/Meta-Llama-3-8B-Instruct` | Psychology | `high_school_psychology`, `professional_psychology` |
|
| 120 |
|
|
|
|
| 121 |
### MMLU Benchmark Results (5-shot learning)
|
| 122 |
Here are the comparative MMLU scores for various models tested under a 5-shot learning setup:
|
| 123 |
|
|
@@ -131,7 +133,8 @@ Here are the comparative MMLU scores for various models tested under a 5-shot le
|
|
| 131 |
| Gemma-2b | 42.3% |
|
| 132 |
| Gemma-7b | 64.3% |
|
| 133 |
|
| 134 |
-
|
|
|
|
| 135 |
|
| 136 |
## References
|
| 137 |
We thank the Microsoft team for their amazing model!
|
|
|
|
| 20 |
- <a href="https://www.nexa4ai.com/" target="_blank">Nexa AI Website</a>
|
| 21 |
- <a href="https://github.com/NexaAI/octopus-v4" target="_blank">Octopus-v4 Github</a>
|
| 22 |
- <a href="https://arxiv.org/abs/2404.19296" target="_blank">ArXiv</a>
|
| 23 |
+
- <a href="https://huggingface.co/spaces/NexaAIDev/domain_llm_leaderboard" target="_blank">Domain LLM Leaderbaord</a>
|
| 24 |
- <a href="https://graph.nexa4ai.com/" target="_blank">Graph demo</a>
|
| 25 |
</p>
|
| 26 |
|
|
|
|
| 119 |
| `AdaptLLM/law-chat` | Law | `international_law`, `jurisprudence`, `professional_law` |
|
| 120 |
| `meta-llama/Meta-Llama-3-8B-Instruct` | Psychology | `high_school_psychology`, `professional_psychology` |
|
| 121 |
|
| 122 |
+
|
| 123 |
### MMLU Benchmark Results (5-shot learning)
|
| 124 |
Here are the comparative MMLU scores for various models tested under a 5-shot learning setup:
|
| 125 |
|
|
|
|
| 133 |
| Gemma-2b | 42.3% |
|
| 134 |
| Gemma-7b | 64.3% |
|
| 135 |
|
| 136 |
+
### Domain LLM Leaderboard
|
| 137 |
+
Explore our collection of domain-specific large language models (LLMs) or contribute by suggesting new models tailored to specific domains. For detailed information on available models and to engage with our community, please visit our [Domain LLM Leaderboard](https://huggingface.co/spaces/NexaAIDev/domain_llm_leaderboard).
|
| 138 |
|
| 139 |
## References
|
| 140 |
We thank the Microsoft team for their amazing model!
|