|
|
|
|
|
|
|
|
''' |
|
|
@license: (C) Copyright 2025, Hey. |
|
|
@author: Hey |
|
|
@email: [email protected] |
|
|
@tel: 137****6540 |
|
|
@datetime: 2025/12/30 11:34 |
|
|
@project: lucaone |
|
|
@file: tokenization_lucaone |
|
|
@desc: tokenization_lucaone |
|
|
''' |
|
|
|
|
|
from typing import Literal |
|
|
from transformers import PretrainedConfig |
|
|
|
|
|
class LucaGPLMConfig(PretrainedConfig): |
|
|
model_type = "lucaone" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
vocab_size: int = 39, |
|
|
pad_token_id: int = 0, |
|
|
unk_token_id: int = 1, |
|
|
bos_token_id: int = 2, |
|
|
eos_token_id: int = 3, |
|
|
sep_token_id: int = 3, |
|
|
mask_token_id: int = 4, |
|
|
hidden_act: str = "gelu", |
|
|
max_position_embeddings: int = 4096, |
|
|
type_vocab_size: int = 2, |
|
|
num_hidden_layers: int = 20, |
|
|
num_attention_heads: int = 40, |
|
|
hidden_size: int = 2560, |
|
|
ffn_dim: int = 10240, |
|
|
no_position_embeddings: bool = True, |
|
|
no_token_type_embeddings: bool = False, |
|
|
alphabet: str = "gene_prot", |
|
|
token_dropout: bool = False, |
|
|
attention_probs_dropout_prob: float = 0.0, |
|
|
hidden_dropout_prob: float = 0.0, |
|
|
use_embed_layer_norm: bool = False, |
|
|
use_last_layer_norm: bool = True, |
|
|
embed_scale: float = 1.0, |
|
|
ignore_index: int = -100, |
|
|
layer_norm_eps: float = 1e-12, |
|
|
initializer_range: float = 0.02, |
|
|
task_level: Literal["seq_level", "token_level"] = "seq_level", |
|
|
task_type: Literal["embedding", "mlm", "multi_class", "binary_class", "regression", "multi_label"] = "embedding", |
|
|
classifier_num_labels: int = -1, |
|
|
classifier_dropout_prob: float = 0.1, |
|
|
classifier_pooling_type: Literal["cls", "value_attention", "context_attention", "mean"] = "value_attention", |
|
|
classifier_loss_type: Literal["binary_cross_entropy", "cross_entropy", "mse", "mae"] = "cross_entropy", |
|
|
classifier_loss_reduction: Literal["mean", "sum", "none"] = "mean", |
|
|
classifier_pos_weight: float=1.0, |
|
|
classifier_weight: list=None, |
|
|
tie_word_embeddings: bool=True, |
|
|
**kwargs |
|
|
): |
|
|
super().__init__( |
|
|
tie_word_embeddings=tie_word_embeddings, |
|
|
pad_token_id=pad_token_id, |
|
|
**kwargs |
|
|
) |
|
|
|
|
|
self.alphabet = alphabet |
|
|
self.vocab_size = vocab_size |
|
|
self.max_position_embeddings = max_position_embeddings |
|
|
self.type_vocab_size = type_vocab_size |
|
|
self.no_token_type_embeddings = no_token_type_embeddings |
|
|
self.no_position_embeddings = no_position_embeddings |
|
|
self.num_hidden_layers = num_hidden_layers |
|
|
self.hidden_size = hidden_size |
|
|
self.num_attention_heads = num_attention_heads |
|
|
self.ffn_dim = ffn_dim |
|
|
self.token_dropout = token_dropout |
|
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob |
|
|
self.hidden_dropout_prob = hidden_dropout_prob |
|
|
self.classifier_dropout_prob = classifier_dropout_prob |
|
|
self.ignore_index = ignore_index |
|
|
self.use_embed_layer_norm = use_embed_layer_norm |
|
|
self.use_last_layer_norm = use_last_layer_norm |
|
|
self.embed_scale = embed_scale |
|
|
self.layer_norm_eps = layer_norm_eps |
|
|
self.initializer_range = initializer_range |
|
|
self.unk_token_id = unk_token_id |
|
|
self.bos_token_id = bos_token_id |
|
|
self.eos_token_id = eos_token_id |
|
|
self.sep_token_id = sep_token_id |
|
|
self.mask_token_id = mask_token_id |
|
|
self.hidden_act = hidden_act |
|
|
self.classifier_num_labels = classifier_num_labels |
|
|
self.classifier_pooling_type = classifier_pooling_type |
|
|
self.task_level = task_level |
|
|
self.task_type = task_type |
|
|
self.classifier_loss_type = classifier_loss_type |
|
|
self.classifier_loss_reduction = classifier_loss_reduction |
|
|
self.classifier_pos_weight = classifier_pos_weight |
|
|
self.classifier_weight = classifier_weight |
|
|
|
|
|
|
|
|
__all__ = ["LucaGPLMConfig"] |