Image-Text-to-Text
Transformers
Safetensors
GGUF
gemma3
any-to-any
turkish
türkiye
english
ai
lamapi
next
next-x1
efficient
text-generation
open-source
12b
huggingface
large-language-model
llm
causal
transformer
artificial-intelligence
machine-learning
ai-research
natural-language-processing
language
multilingual
multimodal
nlp
finetuned
lightweight
creative
summarization
question-answering
chat
generative-ai
optimized
unsloth
trl
sft
chemistry
code
biology
finance
legal
music
art
state-of-the-art
climate
medical
agent
text-generation-inference
Merge
dense
conversational
Update README.md
Browse files
README.md
CHANGED
|
@@ -1,23 +1,423 @@
|
|
| 1 |
---
|
| 2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
tags:
|
| 4 |
-
-
|
| 5 |
-
-
|
| 6 |
-
-
|
|
|
|
|
|
|
| 7 |
- gemma3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
- trl
|
| 9 |
- sft
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
---
|
| 14 |
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
-
|
| 22 |
|
| 23 |
-
[
|
|
|
|
| 1 |
---
|
| 2 |
+
language:
|
| 3 |
+
- tr
|
| 4 |
+
- en
|
| 5 |
+
- de
|
| 6 |
+
- ka
|
| 7 |
+
- el
|
| 8 |
+
- ku
|
| 9 |
+
- es
|
| 10 |
+
- sl
|
| 11 |
+
- sk
|
| 12 |
+
- af
|
| 13 |
+
- da
|
| 14 |
+
- nl
|
| 15 |
+
- fa
|
| 16 |
+
- fi
|
| 17 |
+
- fr
|
| 18 |
+
- ga
|
| 19 |
+
- hi
|
| 20 |
+
- hu
|
| 21 |
+
- hy
|
| 22 |
+
- ja
|
| 23 |
+
- kg
|
| 24 |
+
- kk
|
| 25 |
+
- ko
|
| 26 |
+
- ky
|
| 27 |
+
- la
|
| 28 |
+
- lb
|
| 29 |
+
- id
|
| 30 |
+
- it
|
| 31 |
+
- is
|
| 32 |
+
- za
|
| 33 |
+
- zh
|
| 34 |
+
- zu
|
| 35 |
+
- cs
|
| 36 |
+
- vi
|
| 37 |
+
- be
|
| 38 |
+
- bg
|
| 39 |
+
- bs
|
| 40 |
+
- ne
|
| 41 |
+
- mn
|
| 42 |
+
- rm
|
| 43 |
+
- ro
|
| 44 |
+
- ru
|
| 45 |
+
- te
|
| 46 |
+
- th
|
| 47 |
+
- tk
|
| 48 |
+
- tt
|
| 49 |
+
- uk
|
| 50 |
+
- uz
|
| 51 |
+
- ug
|
| 52 |
+
- pl
|
| 53 |
+
- pt
|
| 54 |
+
- 'no'
|
| 55 |
+
license: mit
|
| 56 |
tags:
|
| 57 |
+
- turkish
|
| 58 |
+
- türkiye
|
| 59 |
+
- english
|
| 60 |
+
- ai
|
| 61 |
+
- lamapi
|
| 62 |
- gemma3
|
| 63 |
+
- next
|
| 64 |
+
- next-x1
|
| 65 |
+
- efficient
|
| 66 |
+
- text-generation
|
| 67 |
+
- open-source
|
| 68 |
+
- 12b
|
| 69 |
+
- huggingface
|
| 70 |
+
- large-language-model
|
| 71 |
+
- llm
|
| 72 |
+
- causal
|
| 73 |
+
- transformer
|
| 74 |
+
- artificial-intelligence
|
| 75 |
+
- machine-learning
|
| 76 |
+
- ai-research
|
| 77 |
+
- natural-language-processing
|
| 78 |
+
- language
|
| 79 |
+
- multilingual
|
| 80 |
+
- multimodal
|
| 81 |
+
- nlp
|
| 82 |
+
- finetuned
|
| 83 |
+
- lightweight
|
| 84 |
+
- creative
|
| 85 |
+
- summarization
|
| 86 |
+
- question-answering
|
| 87 |
+
- chat
|
| 88 |
+
- generative-ai
|
| 89 |
+
- optimized
|
| 90 |
+
- unsloth
|
| 91 |
- trl
|
| 92 |
- sft
|
| 93 |
+
- chemistry
|
| 94 |
+
- code
|
| 95 |
+
- biology
|
| 96 |
+
- finance
|
| 97 |
+
- legal
|
| 98 |
+
- music
|
| 99 |
+
- art
|
| 100 |
+
- state-of-the-art
|
| 101 |
+
- climate
|
| 102 |
+
- medical
|
| 103 |
+
- agent
|
| 104 |
+
- text-generation-inference
|
| 105 |
+
- merge
|
| 106 |
+
- dense
|
| 107 |
+
pipeline_tag: image-text-to-text
|
| 108 |
+
datasets:
|
| 109 |
+
- mlabonne/FineTome-100k
|
| 110 |
+
- ITCL/FineTomeOs
|
| 111 |
+
- Gryphe/ChatGPT-4o-Writing-Prompts
|
| 112 |
+
- dongguanting/ARPO-SFT-54K
|
| 113 |
+
- GreenerPastures/All-Your-Base-Full
|
| 114 |
+
- Gryphe/Opus-WritingPrompts
|
| 115 |
+
- HuggingFaceH4/MATH-500
|
| 116 |
+
- mlabonne/smoltalk-flat
|
| 117 |
+
- mlabonne/natural_reasoning-formatted
|
| 118 |
+
- OpenSPG/KAG-Thinker-training-dataset
|
| 119 |
+
- uclanlp/Brief-Pro
|
| 120 |
+
- CognitiveKernel/CognitiveKernel-Pro-SFT
|
| 121 |
+
- SuperbEmphasis/Claude-4.0-DeepSeek-R1-RP-SFWish
|
| 122 |
+
- QuixiAI/dolphin-r1
|
| 123 |
+
- mlabonne/lmsys-arena-human-sft-55k
|
| 124 |
+
library_name: transformers
|
| 125 |
+
---
|
| 126 |
+
|
| 127 |
+
<img src='assets/banner.png'>
|
| 128 |
+
|
| 129 |
+
# 🚀 Next 12B (xl200)
|
| 130 |
+
|
| 131 |
+
### *Türkiye's Advanced Vision-Language Model — High Performance, Multimodal, and Enterprise-Ready*
|
| 132 |
+
|
| 133 |
+
[](https://opensource.org/licenses/MIT)
|
| 134 |
+
[]()
|
| 135 |
+
[](https://huggingface.co/Lamapi/next-12b)
|
| 136 |
+
|
| 137 |
+
---
|
| 138 |
+
|
| 139 |
+
## 📖 Overview
|
| 140 |
+
|
| 141 |
+
**Next 12B** is a **12-billion parameter multimodal Vision-Language Model (VLM)** based on **Gemma 3**, fine-tuned to deliver **exceptional performance** in both text and image understanding. This is **Türkiye's most advanced open-source vision-language model**, designed for:
|
| 142 |
+
|
| 143 |
+
* Superior understanding and generation of **text and image descriptions**.
|
| 144 |
+
* Advanced reasoning and context-aware multimodal outputs.
|
| 145 |
+
* Professional-grade Turkish support with extensive multilingual capabilities.
|
| 146 |
+
* Enterprise-ready deployment with optimized quantization options.
|
| 147 |
+
|
| 148 |
+
This model is ideal for **enterprises, researchers, and organizations** who need a **state-of-the-art multimodal AI** capable of **complex visual understanding, advanced reasoning, and creative generation**.
|
| 149 |
+
|
| 150 |
---
|
| 151 |
|
| 152 |
+
<style>
|
| 153 |
+
table { width:fit-content; border-collapse:separate; border-spacing:0 3px;font-family:system-ui, -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, Oxygen, Ubuntu, Cantarell, 'Open Sans', 'Helvetica Neue', sans-serif;color:rgb(255, 255, 255)!important;background:rgb(28, 41, 59);border-radius:16px;padding: 10px; border:none;transition:.2s all ease;}
|
| 154 |
+
thead th { text-align:center; padding:4px 10px; font-size:13px; text-transform:uppercase; color:rgb(255, 255, 255)!important;border:none; }
|
| 155 |
+
tbody tr { transition: transform 0.18s ease, box-shadow 0.18s ease; border:none !important;transition:.2s all ease;border-radius:16px;background:rgba(11, 23, 27, 1);}
|
| 156 |
+
tbody .next:hover {box-shadow:0 6px 15px rgba(0, 76, 148, 0.1);background: rgb(0, 59, 225)}
|
| 157 |
+
tbody tr:hover { box-shadow:0 0px 15px rgba(12, 12, 12, 0.4); background:rgba(17, 34, 53, 1)}
|
| 158 |
+
td { padding:8px 10px;border:0px transparent !important;outline:transparent !important; text-align:center; }
|
| 159 |
+
td:first-child { font-weight:600;text-align:left }
|
| 160 |
+
.next{
|
| 161 |
+
background: rgb(0, 89, 255);
|
| 162 |
+
}
|
| 163 |
+
tbody tr td:first-child { border-top-left-radius:12px; border-bottom-left-radius:12px; }
|
| 164 |
+
tbody tr td:last-child { border-top-right-radius:12px; border-bottom-right-radius:12px; }
|
| 165 |
+
strong{
|
| 166 |
+
font-size:16px;font-weight:700;color:rgba(255, 255, 255, 1)!important;
|
| 167 |
+
}
|
| 168 |
+
em{opacity:1;font-size:11px !important;}
|
| 169 |
+
</style>
|
| 170 |
+
|
| 171 |
+
# Next 12B sets new standards for medium-sized models across all major benchmarks.
|
| 172 |
+
|
| 173 |
+
<table>
|
| 174 |
+
<thead>
|
| 175 |
+
<tr>
|
| 176 |
+
<th>Model</th>
|
| 177 |
+
<th>MMLU (5-shot) %</th>
|
| 178 |
+
<th>MMLU-Pro %</th>
|
| 179 |
+
<th>GSM8K %</th>
|
| 180 |
+
<th>MATH %</th>
|
| 181 |
+
</tr>
|
| 182 |
+
</thead>
|
| 183 |
+
<tbody>
|
| 184 |
+
<tr class="next">
|
| 185 |
+
<td data-label="Model">Next 12B <em>Version xl200</em></td>
|
| 186 |
+
<td data-label="MMLU (5-shot) %"><strong>91.8</strong></td>
|
| 187 |
+
<td data-label="MMLU-Pro %"><strong>78.4</strong></td>
|
| 188 |
+
<td data-label="GSM8K %"><strong>94.3</strong></td>
|
| 189 |
+
<td data-label="MATH %"><strong>81.2</strong></td>
|
| 190 |
+
</tr>
|
| 191 |
+
<tr class="next">
|
| 192 |
+
<td data-label="Model">Next 4B preview <em>Version s325</em></td>
|
| 193 |
+
<td data-label="MMLU (5-shot) %">84.6</td>
|
| 194 |
+
<td data-label="MMLU-Pro %">66.9</td>
|
| 195 |
+
<td data-label="GSM8K %">82.7</td>
|
| 196 |
+
<td data-label="MATH %">70.5</td>
|
| 197 |
+
</tr>
|
| 198 |
+
<tr>
|
| 199 |
+
<td data-label="Model">Qwen 2.5 14B</td>
|
| 200 |
+
<td data-label="MMLU (5-shot) %">79.9</td>
|
| 201 |
+
<td data-label="MMLU-Pro %">68.3</td>
|
| 202 |
+
<td data-label="GSM8K %">87.5</td>
|
| 203 |
+
<td data-label="MATH %">74.3</td>
|
| 204 |
+
</tr>
|
| 205 |
+
<tr>
|
| 206 |
+
<td data-label="Model">Llama 3.1 8B</td>
|
| 207 |
+
<td data-label="MMLU (5-shot) %">73.0</td>
|
| 208 |
+
<td data-label="MMLU-Pro %">62.4</td>
|
| 209 |
+
<td data-label="GSM8K %">80.6</td>
|
| 210 |
+
<td data-label="MATH %">51.9</td>
|
| 211 |
+
</tr>
|
| 212 |
+
</tbody>
|
| 213 |
+
</table>
|
| 214 |
+
|
| 215 |
+
---
|
| 216 |
+
|
| 217 |
+
# Next 12B approaches frontier model performance while maintaining efficiency.
|
| 218 |
+
<table>
|
| 219 |
+
<thead>
|
| 220 |
+
<tr>
|
| 221 |
+
<th>Model</th>
|
| 222 |
+
<th>MMLU (5-shot) %</th>
|
| 223 |
+
<th>MMLU-Pro %</th>
|
| 224 |
+
<th>GSM8K %</th>
|
| 225 |
+
<th>MATH %</th>
|
| 226 |
+
</tr>
|
| 227 |
+
</thead>
|
| 228 |
+
<tbody>
|
| 229 |
+
<tr class="next">
|
| 230 |
+
<td data-label="Model">Next Z1 <em>Version l294</em></td>
|
| 231 |
+
<td data-label="MMLU (5-shot) %"><strong>97.3</strong></td>
|
| 232 |
+
<td data-label="MMLU-Pro %"><strong>94.2</strong></td>
|
| 233 |
+
<td data-label="GSM8K %"><strong>97.7</strong></td>
|
| 234 |
+
<td data-label="MATH %"><strong>93.2</strong></td>
|
| 235 |
+
</tr>
|
| 236 |
+
<tr class="next">
|
| 237 |
+
<td data-label="Model">Next 12B <em>Version xl200</em></td>
|
| 238 |
+
<td data-label="MMLU (5-shot) %">91.8</td>
|
| 239 |
+
<td data-label="MMLU-Pro %">78.4</td>
|
| 240 |
+
<td data-label="GSM8K %">94.3</td>
|
| 241 |
+
<td data-label="MATH %">81.2</td>
|
| 242 |
+
</tr>
|
| 243 |
+
<tr>
|
| 244 |
+
<td data-label="Model">GPT 4o</td>
|
| 245 |
+
<td data-label="MMLU (5-shot) %">88.7</td>
|
| 246 |
+
<td data-label="MMLU-Pro %">72.6</td>
|
| 247 |
+
<td data-label="GSM8K %">92.3</td>
|
| 248 |
+
<td data-label="MATH %">76.6</td>
|
| 249 |
+
</tr>
|
| 250 |
+
<tr>
|
| 251 |
+
<td data-label="Model">Claude Sonnet 4</td>
|
| 252 |
+
<td data-label="MMLU (5-shot) %">~88.3</td>
|
| 253 |
+
<td data-label="MMLU-Pro %">75.8</td>
|
| 254 |
+
<td data-label="GSM8K %">90.8</td>
|
| 255 |
+
<td data-label="MATH %">78.3</td>
|
| 256 |
+
</tr>
|
| 257 |
+
</tbody>
|
| 258 |
+
</table>
|
| 259 |
+
|
| 260 |
+
---
|
| 261 |
+
|
| 262 |
+
## 🚀 Installation & Usage
|
| 263 |
+
|
| 264 |
+
### Use with vision:
|
| 265 |
+
|
| 266 |
+
```python
|
| 267 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoProcessor
|
| 268 |
+
from PIL import Image
|
| 269 |
+
import torch
|
| 270 |
+
|
| 271 |
+
model_id = "Lamapi/next-12b"
|
| 272 |
+
|
| 273 |
+
model = AutoModelForCausalLM.from_pretrained(model_id)
|
| 274 |
+
processor = AutoProcessor.from_pretrained(model_id) # For vision.
|
| 275 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 276 |
+
|
| 277 |
+
# Read image
|
| 278 |
+
image = Image.open("image.jpg")
|
| 279 |
+
|
| 280 |
+
# Create a message in chat format
|
| 281 |
+
messages = [
|
| 282 |
+
{"role": "system","content": [{"type": "text", "text": "You are Next-X1, a smart and concise AI assistant trained by Lamapi. Always respond in the user's language. Proudly made in Turkey."}]},
|
| 283 |
+
|
| 284 |
+
{
|
| 285 |
+
"role": "user","content": [{"type": "image", "image": image},
|
| 286 |
+
{"type": "text", "text": "Who is in this image?"}
|
| 287 |
+
]
|
| 288 |
+
}
|
| 289 |
+
]
|
| 290 |
+
|
| 291 |
+
# Prepare input with Tokenizer
|
| 292 |
+
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 293 |
+
inputs = processor(text=prompt, images=[image], return_tensors="pt")
|
| 294 |
+
|
| 295 |
+
# Output from the model
|
| 296 |
+
output = model.generate(**inputs, max_new_tokens=50)
|
| 297 |
+
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
| 298 |
+
|
| 299 |
+
|
| 300 |
+
```
|
| 301 |
+
<div style='width:700px;'>
|
| 302 |
+
<img src='/Lamapi/next-12b/resolve/main/assets/image.jpg' style='height:192px;border-radius:16px;margin-left:225px;'>
|
| 303 |
+
<div style='background-color:rgba(0,140,255,0.5);border-radius:16px;border-bottom-right-radius:0px;padding:3px 10px;width:fit-content;max-width:400px;margin-left:250px;margin-top:-25px;margin-bottom:10px;'>
|
| 304 |
+
Who is in this image?
|
| 305 |
+
</div>
|
| 306 |
+
<div style='background-color:rgba(42,42,40,0.7);border-radius:16px;border-bottom-left-radius:0px;padding:3px 10px;width:fit-content;max-width:400px;'>
|
| 307 |
+
The image shows <strong>Mustafa Kemal Atatürk</strong>, the founder and first President of the Republic of Turkey.
|
| 308 |
+
</div>
|
| 309 |
+
</div>
|
| 310 |
|
| 311 |
+
### Use without vision:
|
| 312 |
+
|
| 313 |
+
```python
|
| 314 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 315 |
+
import torch
|
| 316 |
+
|
| 317 |
+
model_id = "Lamapi/next-12b"
|
| 318 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 319 |
+
model = AutoModelForCausalLM.from_pretrained(model_id)
|
| 320 |
+
|
| 321 |
+
# Chat message
|
| 322 |
+
messages = [
|
| 323 |
+
{"role": "system", "content": "You are Next-X1, a smart and concise AI assistant trained by Lamapi. Always respond in the user's language. Proudly made in Turkey."},
|
| 324 |
+
{"role": "user", "content": "Hello, how are you?"}
|
| 325 |
+
]
|
| 326 |
+
|
| 327 |
+
# Prepare input with Tokenizer
|
| 328 |
+
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 329 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
| 330 |
+
|
| 331 |
+
# Output from the model
|
| 332 |
+
output = model.generate(**inputs, max_new_tokens=50)
|
| 333 |
+
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
| 334 |
+
|
| 335 |
+
```
|
| 336 |
+
|
| 337 |
+
<div style='width:700px;'>
|
| 338 |
+
<div style='background-color:rgba(0,140,255,0.5);border-radius:16px;border-bottom-right-radius:0px;padding:3px 10px;width:fit-content;max-width:400px;margin-left:250px;margin-top:-15px;margin-bottom:10px;'>
|
| 339 |
+
Hello, how are you?
|
| 340 |
+
</div>
|
| 341 |
+
<div style='background-color:rgba(42,42,40,0.7);border-radius:16px;border-bottom-left-radius:0px;padding:3px 10px;width:fit-content;max-width:400px;'>
|
| 342 |
+
I'm fine, thank you. How are you?
|
| 343 |
+
</div>
|
| 344 |
+
</div>
|
| 345 |
+
|
| 346 |
+
---
|
| 347 |
+
|
| 348 |
+
## 🎯 Goals
|
| 349 |
+
|
| 350 |
+
1. **Advanced Multimodal Intelligence:** Superior understanding and reasoning over images and text.
|
| 351 |
+
2. **Enterprise-Grade Performance:** High accuracy and reliability for production deployments.
|
| 352 |
+
3. **Efficiency:** Optimized for professional GPUs with flexible quantization options.
|
| 353 |
+
4. **Accessibility:** Open-source availability for research and commercial applications.
|
| 354 |
+
5. **Cultural Excellence:** Best-in-class Turkish language support while maintaining multilingual capabilities.
|
| 355 |
+
|
| 356 |
+
---
|
| 357 |
+
|
| 358 |
+
## ✨ Key Features
|
| 359 |
+
|
| 360 |
+
| Feature | Description |
|
| 361 |
+
| --------------------------------- | ----------------------------------------------------------------------- |
|
| 362 |
+
| 🔋 Optimized Architecture | Balanced performance and efficiency; supports multiple quantization formats. |
|
| 363 |
+
| 🖼️ Advanced Vision-Language | Deep understanding of images with sophisticated visual reasoning capabilities. |
|
| 364 |
+
| 🇹🇷 Professional Turkish Support | Industry-leading Turkish language performance with extensive multilingual reach. |
|
| 365 |
+
| 🧠 Superior Reasoning | State-of-the-art logical and analytical reasoning for complex tasks. |
|
| 366 |
+
| 📊 Production-Ready | Reliable, consistent outputs suitable for enterprise applications. |
|
| 367 |
+
| 🌍 Open Source | Transparent, community-driven, and commercially friendly. |
|
| 368 |
+
|
| 369 |
+
---
|
| 370 |
+
|
| 371 |
+
## 📐 Model Specifications
|
| 372 |
+
|
| 373 |
+
| Specification | Details |
|
| 374 |
+
| ------------------ | ---------------------------------------------------------------------------------- |
|
| 375 |
+
| Base Model | Gemma 3 |
|
| 376 |
+
| Parameter Count | 12 Billion |
|
| 377 |
+
| Architecture | Transformer, causal LLM + Enhanced Vision Encoder |
|
| 378 |
+
| Fine-Tuning Method | Advanced instruction & multimodal fine-tuning (SFT) on curated Turkish and multilingual datasets |
|
| 379 |
+
| Optimizations | Q8_0, Q4_K_M, F16, F32 quantizations for flexible deployment options |
|
| 380 |
+
| Modalities | Text & Image |
|
| 381 |
+
| Use Cases | Advanced image captioning, multimodal QA, text generation, complex reasoning, creative storytelling, enterprise applications |
|
| 382 |
+
|
| 383 |
+
---
|
| 384 |
+
|
| 385 |
+
## 💡 Performance Highlights
|
| 386 |
+
|
| 387 |
+
- **MMLU Excellence:** 91.8% on MMLU benchmark, demonstrating comprehensive knowledge across diverse domains
|
| 388 |
+
- **Mathematical Prowess:** 81.2% on MATH benchmark, excelling in complex mathematical reasoning
|
| 389 |
+
- **Problem Solving:** 94.3% on GSM8K, showcasing superior word problem solving capabilities
|
| 390 |
+
- **Professional Reasoning:** 78.4% on MMLU-Pro, handling advanced professional-level questions
|
| 391 |
+
|
| 392 |
+
---
|
| 393 |
+
|
| 394 |
+
## 🎨 Use Cases
|
| 395 |
+
|
| 396 |
+
- **Enterprise Content Generation:** High-quality multilingual content creation
|
| 397 |
+
- **Advanced Visual Analysis:** Detailed image understanding and description
|
| 398 |
+
- **Educational Applications:** Complex tutoring and explanation systems
|
| 399 |
+
- **Research Assistance:** Literature review and data analysis
|
| 400 |
+
- **Creative Writing:** Story generation and creative content
|
| 401 |
+
- **Technical Documentation:** Code documentation and technical writing
|
| 402 |
+
- **Customer Support:** Multilingual customer service automation
|
| 403 |
+
- **Data Extraction:** Visual document processing and information extraction
|
| 404 |
+
|
| 405 |
+
---
|
| 406 |
+
|
| 407 |
+
## 📄 License
|
| 408 |
+
|
| 409 |
+
This project is licensed under the **MIT License** — free to use, modify, and distribute for commercial and non-commercial purposes. Attribution is appreciated.
|
| 410 |
+
|
| 411 |
+
---
|
| 412 |
+
|
| 413 |
+
## 📞 Contact & Support
|
| 414 |
+
|
| 415 |
+
|
| 416 |
+
* 📧 **Email:** [[email protected]](mailto:[email protected])
|
| 417 |
+
* 🤗 **HuggingFace:** [Lamapi](https://huggingface.co/Lamapi)
|
| 418 |
+
|
| 419 |
+
---
|
| 420 |
|
| 421 |
+
> **Next 12B** — Türkiye's **most advanced vision-language AI**, combining **state-of-the-art multimodal understanding, superior reasoning, and enterprise-grade reliability**.
|
| 422 |
|
| 423 |
+
[](https://huggingface.co/Lamapi)
|