Upload 41 files
Browse files- README.md +70 -0
- data_maker/__init__.py +0 -0
- data_maker/data_provider.py +178 -0
- main.py +247 -0
- method/CSSM.ipynb +210 -0
- method/MambaCSSM.py +382 -0
- method/Model.py +173 -0
- method/__pycache__/Mamba.cpython-313.pyc +0 -0
- method/__pycache__/MambaCSSM.cpython-313.pyc +0 -0
- method/__pycache__/Model.cpython-313.pyc +0 -0
- pre_trained_weights/LEVIR+/levir_cd_+_cssm.pth +3 -0
- pre_trained_weights/LEVIR+/levir_layer_1.pth +3 -0
- pre_trained_weights/LEVIR+/levir_layer_2.pth +3 -0
- pre_trained_weights/LEVIR+/levir_layer_3.pth +3 -0
- pre_trained_weights/LEVIR+/levir_layer_4.pth +3 -0
- pre_trained_weights/LEVIR+/levir_layer_6.pth +3 -0
- pre_trained_weights/SYSU-CD/sysu.pth +3 -0
- pre_trained_weights/SYSU-CD/sysu_1.pth +3 -0
- pre_trained_weights/SYSU-CD/sysu_layer_1.pth +3 -0
- pre_trained_weights/SYSU-CD/sysu_layer_2.pth +3 -0
- pre_trained_weights/SYSU-CD/sysu_layer_3.pth +3 -0
- pre_trained_weights/SYSU-CD/sysu_layer_4.pth +3 -0
- pre_trained_weights/SYSU-CD/sysu_layer_5.pth +3 -0
- pre_trained_weights/SYSU-CD/sysu_layer_6.pth +3 -0
- pre_trained_weights/WHU-CD/whu.pth +3 -0
- pre_trained_weights/WHU-CD/whu_1.pth +3 -0
- pre_trained_weights/WHU-CD/whu_layer_1.pth +3 -0
- pre_trained_weights/WHU-CD/whu_layer_2.pth +3 -0
- pre_trained_weights/WHU-CD/whu_layer_3.pth +3 -0
- pre_trained_weights/WHU-CD/whu_layer_4.pth +3 -0
- pre_trained_weights/WHU-CD/whu_layer_5.pth +3 -0
- pre_trained_weights/WHU-CD/whu_layer_6.pth +3 -0
- utils/__pycache__/__init__.cpython-313.pyc +0 -0
- utils/__pycache__/imgutils.cpython-313.pyc +0 -0
- utils/__pycache__/make_data.cpython-313.pyc +0 -0
- utils/__pycache__/metric.cpython-313.pyc +0 -0
- utils/__pycache__/utils_loss.cpython-313.pyc +0 -0
- utils/loss/L.py +245 -0
- utils/loss/__pycache__/L.cpython-313.pyc +0 -0
- utils/metrics/__pycache__/ev.cpython-313.pyc +0 -0
- utils/metrics/ev.py +103 -0
README.md
ADDED
|
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
<div align="center">
|
| 3 |
+
|
| 4 |
+
# CSSM
|
| 5 |
+
**Efficient Remote Sensing Change Detection with Change State Space Models**
|
| 6 |
+
|
| 7 |
+
[**E.Ghazaei**](https://scholar.google.com/citations?user=R-ghC00AAAAJ&hl=en), [**E.Aptoula**](https://sites.google.com/view/erchan-aptoula/)
|
| 8 |
+
|
| 9 |
+
Faculty of Engineering and Natural Sciences (VPALab), Sabanci University, Istanbul, Turkiye
|
| 10 |
+
|
| 11 |
+
[[Paper Link](https://arxiv.org/abs/2504.11080)]
|
| 12 |
+
</div>
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
## 🛎️Updates
|
| 17 |
+
* **` Notice🐍🐍`**: CSSM has been accepted by [IEEE GRSL](https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8859)! We'd appreciate it if you could give this repo a ⭐️**star**⭐️ and stay tuned!!
|
| 18 |
+
* **` Nov 05th, 2025`**: The CSSM model and training code uploaded. You are welcome to use them!!
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
---
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
## 🚀 Overview
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
* [**CSSM**]() serves as an efficient and state-of-the-art (SOTA) benchmark for binary change detection.
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
<p align="center">
|
| 34 |
+
|
| 35 |
+
<img width="1395" height="579" alt="Screenshot from 2025-11-03 16-28-31" src="https://github.com/user-attachments/assets/dccfdfc5-98b4-443d-b170-07e5e3ec551d" />
|
| 36 |
+
</p>
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
---
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
## Datasets
|
| 43 |
+
We used [LEVIR-CD+](https://www.kaggle.com/datasets/mdrifaturrahman33/levir-cd-change-detection), [SYSU-CD](https://github.com/liumency/SYSU-CD), and [WHU-CD](http://gpcv.whu.edu.cn/data/building_dataset.html) as the main datasets, while [CDD](http://gpcv.whu.edu.cn/data/building_dataset.html) and [OSCD](https://www.kaggle.com/datasets/soumikrakshit/onera-satellite-change-detection-dataset) were included in the ablation study to demonstrate the robustness of our model under different conditions.
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
**Qualitative Analysis:**
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
<p align="center">
|
| 53 |
+
<img width="1379" height="357" alt="Screenshot from 2025-11-03 16-38-52" src="https://github.com/user-attachments/assets/c63690af-fd07-40af-b991-2b5b33ff53af" />
|
| 54 |
+
</p>
|
| 55 |
+
|
| 56 |
+
---
|
| 57 |
+
# Results
|
| 58 |
+
|
| 59 |
+

|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
# Complexity
|
| 64 |
+
|
| 65 |
+
<div align="center">
|
| 66 |
+
|
| 67 |
+

|
| 68 |
+
|
| 69 |
+
</div>
|
| 70 |
+
|
data_maker/__init__.py
ADDED
|
File without changes
|
data_maker/data_provider.py
ADDED
|
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torchvision
|
| 3 |
+
import numpy as np
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import os
|
| 6 |
+
from torchvision import transforms
|
| 7 |
+
import pandas as pd
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
from torch.utils.data import Dataset
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
tfms_normal = transforms.Compose([
|
| 15 |
+
transforms.CenterCrop(size=(256,256)),
|
| 16 |
+
transforms.ToTensor()
|
| 17 |
+
# transforms.Normalize(mean=[0.46,0.44,0.39], std= [0.19,0.18,0.19])
|
| 18 |
+
])
|
| 19 |
+
|
| 20 |
+
tfms_target = transforms.CenterCrop(size = (256,256))
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
class Data_provider_SYSU(Dataset):
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def __init__(self, path):
|
| 27 |
+
self.data_path = path
|
| 28 |
+
self.pre_path = os.path.join(path, "time1")
|
| 29 |
+
self.post_path = os.path.join(path, "time2")
|
| 30 |
+
self.target_path = os.path.join(path, "label")
|
| 31 |
+
|
| 32 |
+
def __len__(self):
|
| 33 |
+
return len(os.listdir(self.post_path))
|
| 34 |
+
|
| 35 |
+
def __getitem__(self, idx):
|
| 36 |
+
|
| 37 |
+
post_list = os.listdir(self.pre_path)
|
| 38 |
+
pre_list = os.listdir(self.post_path)
|
| 39 |
+
target_list = os.listdir(self.target_path)
|
| 40 |
+
|
| 41 |
+
post_list.sort()
|
| 42 |
+
pre_list.sort()
|
| 43 |
+
target_list.sort()
|
| 44 |
+
|
| 45 |
+
pre_image_path = os.path.join(self.pre_path, pre_list[idx])
|
| 46 |
+
post_image_path = os.path.join(self.post_path, post_list[idx])
|
| 47 |
+
target_path = os.path.join(self.target_path, target_list[idx])
|
| 48 |
+
|
| 49 |
+
pre_image = Image.open(pre_image_path)
|
| 50 |
+
post_image = Image.open(post_image_path)
|
| 51 |
+
target_image = Image.open(target_path)
|
| 52 |
+
|
| 53 |
+
pre_image = tfms_normal(pre_image)
|
| 54 |
+
post_image = tfms_normal(post_image)
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
target_image = torch.tensor(np.array(tfms_target(target_image))/255).long()
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
return pre_image, post_image, target_image
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
class Data_provider_levir(Dataset):
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
def __init__(self, path):
|
| 68 |
+
self.data_path = path
|
| 69 |
+
self.pre_path = os.path.join(path, "A")
|
| 70 |
+
self.post_path = os.path.join(path, "B")
|
| 71 |
+
self.target_path = os.path.join(path, "label")
|
| 72 |
+
|
| 73 |
+
def __len__(self):
|
| 74 |
+
return len(os.listdir(self.post_path))
|
| 75 |
+
|
| 76 |
+
def __getitem__(self, idx):
|
| 77 |
+
|
| 78 |
+
pre_list = os.listdir(self.pre_path)
|
| 79 |
+
post_list = os.listdir(self.post_path)
|
| 80 |
+
target_list = os.listdir(self.target_path)
|
| 81 |
+
|
| 82 |
+
post_list.sort()
|
| 83 |
+
pre_list.sort()
|
| 84 |
+
target_list.sort()
|
| 85 |
+
|
| 86 |
+
pre_image_path = os.path.join(self.pre_path, pre_list[idx])
|
| 87 |
+
post_image_path = os.path.join(self.post_path, post_list[idx])
|
| 88 |
+
target_path = os.path.join(self.target_path, target_list[idx])
|
| 89 |
+
# print(pre_image_path)
|
| 90 |
+
# print(post_image_path)
|
| 91 |
+
# print(target_path)
|
| 92 |
+
|
| 93 |
+
pre_image = Image.open(pre_image_path)
|
| 94 |
+
post_image = Image.open(post_image_path)
|
| 95 |
+
target_image = Image.open(target_path)
|
| 96 |
+
|
| 97 |
+
pre_image = tfms_normal(pre_image)
|
| 98 |
+
post_image = tfms_normal(post_image)
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
target_image = torch.tensor(np.array(target_image)/ 255).long()
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
return pre_image, post_image, target_image
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
class Data_provider_WHU(Dataset):
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
def __init__(self, path, file):
|
| 116 |
+
self.data_path = path
|
| 117 |
+
self.pre_path = os.path.join(path, "A")
|
| 118 |
+
self.post_path = os.path.join(path, "B")
|
| 119 |
+
self.target_path = os.path.join(path, "label")
|
| 120 |
+
self.data_names = np.array(pd.read_csv(file, names=["tt"]))
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
def __len__(self):
|
| 124 |
+
return len(self.data_names)
|
| 125 |
+
|
| 126 |
+
def __getitem__(self, idx):
|
| 127 |
+
|
| 128 |
+
name = self.data_names[idx].item()
|
| 129 |
+
|
| 130 |
+
# post_list = os.listdir(self.post_path)
|
| 131 |
+
# pre_list = os.listdir(self.pre_path)
|
| 132 |
+
# target_list = os.listdir(self.target_path)
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
# post_list.sort()
|
| 136 |
+
# pre_list.sort()
|
| 137 |
+
# target_list.sort()
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
pre_image_path = os.path.join(self.pre_path,name )
|
| 142 |
+
post_image_path = os.path.join(self.post_path,name )
|
| 143 |
+
target_path = os.path.join(self.target_path, name)
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
pre_image = Image.open(pre_image_path)
|
| 150 |
+
post_image = Image.open(post_image_path)
|
| 151 |
+
target_image = Image.open(target_path)
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
pre_image = tfms_normal(pre_image)
|
| 155 |
+
post_image = tfms_normal(post_image)
|
| 156 |
+
|
| 157 |
+
target_image = torch.tensor(np.array(tfms_target(target_image)) / 255).long()
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
return pre_image, post_image, target_image
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
|
main.py
ADDED
|
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
|
| 3 |
+
import sys
|
| 4 |
+
import os
|
| 5 |
+
import argparse
|
| 6 |
+
from data_maker.data_provider import Data_provider_levir, Data_provider_SYSU, Data_provider_WHU
|
| 7 |
+
import matplotlib.pyplot as plt
|
| 8 |
+
from torch.utils.data import random_split
|
| 9 |
+
from torch.utils.data import DataLoader
|
| 10 |
+
import random
|
| 11 |
+
import numpy as np
|
| 12 |
+
from method.Model import MambaCSSMUnet
|
| 13 |
+
import copy
|
| 14 |
+
import torch
|
| 15 |
+
import torch.nn as nn
|
| 16 |
+
import torch.nn.functional as F
|
| 17 |
+
from torch.nn.modules.padding import ReplicationPad2d
|
| 18 |
+
from utils.metrics.ev import Evaluator
|
| 19 |
+
from utils.loss.L import lovasz_softmax
|
| 20 |
+
import time
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def parse_args():
|
| 24 |
+
parser = argparse.ArgumentParser(description='Change Detection Training Script')
|
| 25 |
+
|
| 26 |
+
# Dataset arguments
|
| 27 |
+
parser.add_argument('--dataset', type=str, required=True,
|
| 28 |
+
choices=['levir', 'sysu', 'whu'],
|
| 29 |
+
help='Dataset to use: levir, sysu, or whu')
|
| 30 |
+
parser.add_argument('--train_path', type=str, required=True,
|
| 31 |
+
help='Path to training data (for WHU: main data directory)')
|
| 32 |
+
parser.add_argument('--test_path', type=str, default=None,
|
| 33 |
+
help='Path to test data (not used for WHU dataset)')
|
| 34 |
+
parser.add_argument('--val_path', type=str, default=None,
|
| 35 |
+
help='Path to validation data (not used for WHU dataset)')
|
| 36 |
+
|
| 37 |
+
# WHU-CD specific arguments
|
| 38 |
+
parser.add_argument('--train_txt', type=str, default=None,
|
| 39 |
+
help='Text file for WHU-CD training data (required for WHU dataset)')
|
| 40 |
+
parser.add_argument('--test_txt', type=str, default=None,
|
| 41 |
+
help='Text file for WHU-CD test data (required for WHU dataset)')
|
| 42 |
+
parser.add_argument('--val_txt', type=str, default=None,
|
| 43 |
+
help='Text file for WHU-CD validation data (required for WHU dataset)')
|
| 44 |
+
|
| 45 |
+
# Training hyperparameters
|
| 46 |
+
parser.add_argument('--batch_size', type=int, default=64,
|
| 47 |
+
help='Batch size for training (default: 64)')
|
| 48 |
+
parser.add_argument('--epochs', type=int, default=50,
|
| 49 |
+
help='Number of training epochs (default: 50)')
|
| 50 |
+
parser.add_argument('--lr', type=float, default=1e-3,
|
| 51 |
+
help='Learning rate (default: 0.001)')
|
| 52 |
+
parser.add_argument('--step_size', type=int, default=10,
|
| 53 |
+
help='Step size for learning rate scheduler (default: 10)')
|
| 54 |
+
|
| 55 |
+
# Model saving
|
| 56 |
+
parser.add_argument('--save_dir', type=str, default='./checkpoints',
|
| 57 |
+
help='Directory to save model checkpoints (default: ./checkpoints)')
|
| 58 |
+
parser.add_argument('--model_name', type=str, default='best_model.pth',
|
| 59 |
+
help='Name for saved model file (default: best_model.pth)')
|
| 60 |
+
|
| 61 |
+
# Other settings
|
| 62 |
+
parser.add_argument('--seed', type=int, default=42,
|
| 63 |
+
help='Random seed (default: 42)')
|
| 64 |
+
parser.add_argument('--num_workers', type=int, default=4,
|
| 65 |
+
help='Number of data loading workers (default: 4)')
|
| 66 |
+
|
| 67 |
+
return parser.parse_args()
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def set_seed(seed=42):
|
| 71 |
+
random.seed(seed)
|
| 72 |
+
np.random.seed(seed)
|
| 73 |
+
torch.manual_seed(seed)
|
| 74 |
+
torch.cuda.manual_seed_all(seed)
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def get_data_provider(dataset_name):
|
| 78 |
+
"""Return the appropriate data provider class based on dataset name"""
|
| 79 |
+
providers = {
|
| 80 |
+
'levir': Data_provider_levir,
|
| 81 |
+
'sysu': Data_provider_SYSU,
|
| 82 |
+
'whu': Data_provider_WHU
|
| 83 |
+
}
|
| 84 |
+
return providers[dataset_name]
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def seed_worker(worker_id):
|
| 88 |
+
worker_seed = 42
|
| 89 |
+
np.random.seed(worker_seed)
|
| 90 |
+
random.seed(worker_seed)
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
def train(model, data, loss_ce, opt, device, train_list):
|
| 94 |
+
model.train()
|
| 95 |
+
size = len(data.dataset)
|
| 96 |
+
|
| 97 |
+
for b, (pre, post, target) in enumerate(data):
|
| 98 |
+
pre, post, target = pre.to(device), post.to(device), target.to(device)
|
| 99 |
+
|
| 100 |
+
y_pred = model(pre, post)
|
| 101 |
+
|
| 102 |
+
loss = loss_ce(y_pred, target) + lovasz_softmax(F.softmax(y_pred, dim=1), target, ignore=255)
|
| 103 |
+
|
| 104 |
+
opt.zero_grad()
|
| 105 |
+
loss.backward()
|
| 106 |
+
opt.step()
|
| 107 |
+
|
| 108 |
+
train_list.append(loss.item())
|
| 109 |
+
|
| 110 |
+
print(f"loss:{loss.item():.4f} [{b * len(pre)} | {size}]")
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
def test(model, data, loss_ce, device, evaluator, val_list):
|
| 114 |
+
model.eval()
|
| 115 |
+
size = len(data.dataset)
|
| 116 |
+
num_batch = len(data)
|
| 117 |
+
test_loss = 0
|
| 118 |
+
|
| 119 |
+
evaluator.reset()
|
| 120 |
+
|
| 121 |
+
with torch.no_grad():
|
| 122 |
+
for pre, post, target in data:
|
| 123 |
+
pre, post, target = pre.to(device), post.to(device), target.to(device)
|
| 124 |
+
|
| 125 |
+
y_pred = model(pre, post)
|
| 126 |
+
test_loss += loss_ce(y_pred, target).item()
|
| 127 |
+
output_clf = y_pred.data.cpu().numpy()
|
| 128 |
+
output_clf = np.argmax(output_clf, axis=1)
|
| 129 |
+
labels_clf = target.cpu().numpy()
|
| 130 |
+
|
| 131 |
+
evaluator.add_batch(labels_clf, output_clf)
|
| 132 |
+
|
| 133 |
+
test_loss /= num_batch
|
| 134 |
+
val_list.append(test_loss)
|
| 135 |
+
print(f"Validation Loss: {test_loss:.4f}")
|
| 136 |
+
print(f"IoU: {evaluator.Intersection_over_Union()}")
|
| 137 |
+
print(f"Confusion Matrix:\n{evaluator.confusion_matrix}")
|
| 138 |
+
return np.array(evaluator.Intersection_over_Union()).mean()
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
def main():
|
| 142 |
+
args = parse_args()
|
| 143 |
+
|
| 144 |
+
# Validate dataset requirements
|
| 145 |
+
if args.dataset == 'whu':
|
| 146 |
+
if not all([args.train_txt, args.test_txt, args.val_txt]):
|
| 147 |
+
print("Error: WHU dataset requires --train_txt, --test_txt, and --val_txt arguments")
|
| 148 |
+
sys.exit(1)
|
| 149 |
+
else:
|
| 150 |
+
if not all([args.test_path, args.val_path]):
|
| 151 |
+
print(f"Error: {args.dataset.upper()} dataset requires --train_path, --test_path, and --val_path arguments")
|
| 152 |
+
sys.exit(1)
|
| 153 |
+
|
| 154 |
+
# Set seed
|
| 155 |
+
set_seed(args.seed)
|
| 156 |
+
torch.backends.cudnn.deterministic = True
|
| 157 |
+
torch.backends.cudnn.benchmark = False
|
| 158 |
+
|
| 159 |
+
# Setup device
|
| 160 |
+
if torch.cuda.is_available():
|
| 161 |
+
device = torch.device("cuda")
|
| 162 |
+
print("Using CUDA")
|
| 163 |
+
else:
|
| 164 |
+
device = torch.device("cpu")
|
| 165 |
+
print("Using CPU")
|
| 166 |
+
|
| 167 |
+
# Create save directory
|
| 168 |
+
os.makedirs(args.save_dir, exist_ok=True)
|
| 169 |
+
|
| 170 |
+
# Load dataset
|
| 171 |
+
print(f"\nLoading {args.dataset.upper()} dataset...")
|
| 172 |
+
DataProvider = get_data_provider(args.dataset)
|
| 173 |
+
|
| 174 |
+
if args.dataset == 'whu':
|
| 175 |
+
# WHU uses single data path with different text files
|
| 176 |
+
train_ds = DataProvider(args.train_path, args.train_txt)
|
| 177 |
+
test_ds = DataProvider(args.train_path, args.test_txt)
|
| 178 |
+
val_ds = DataProvider(args.train_path, args.val_txt)
|
| 179 |
+
else:
|
| 180 |
+
# LEVIR and SYSU use separate paths
|
| 181 |
+
train_ds = DataProvider(args.train_path)
|
| 182 |
+
test_ds = DataProvider(args.test_path)
|
| 183 |
+
val_ds = DataProvider(args.val_path)
|
| 184 |
+
|
| 185 |
+
# Create data loaders
|
| 186 |
+
train_dl = DataLoader(dataset=train_ds, batch_size=args.batch_size,
|
| 187 |
+
shuffle=True, num_workers=args.num_workers,
|
| 188 |
+
worker_init_fn=seed_worker)
|
| 189 |
+
val_dl = DataLoader(dataset=val_ds, batch_size=args.batch_size,
|
| 190 |
+
shuffle=False, num_workers=1,
|
| 191 |
+
worker_init_fn=seed_worker)
|
| 192 |
+
test_dl = DataLoader(dataset=test_ds, batch_size=args.batch_size,
|
| 193 |
+
shuffle=False, num_workers=1,
|
| 194 |
+
worker_init_fn=seed_worker)
|
| 195 |
+
|
| 196 |
+
# Initialize model
|
| 197 |
+
print("\nInitializing model...")
|
| 198 |
+
model = MambaCSSMUnet().to(device)
|
| 199 |
+
|
| 200 |
+
# Define loss and optimizer
|
| 201 |
+
loss_ce = nn.CrossEntropyLoss()
|
| 202 |
+
opt = torch.optim.Adam(params=model.parameters(), lr=args.lr)
|
| 203 |
+
scheduler = torch.optim.lr_scheduler.StepLR(optimizer=opt, step_size=args.step_size)
|
| 204 |
+
|
| 205 |
+
# Training setup
|
| 206 |
+
train_list = []
|
| 207 |
+
val_list = []
|
| 208 |
+
evaluator = Evaluator(num_class=2)
|
| 209 |
+
best_val_iou = 0.0
|
| 210 |
+
best_model_weight = None
|
| 211 |
+
|
| 212 |
+
# Training loop
|
| 213 |
+
print(f"\nStarting training for {args.epochs} epochs...")
|
| 214 |
+
print("="*60)
|
| 215 |
+
|
| 216 |
+
for e in range(args.epochs):
|
| 217 |
+
print(f"\nEpoch: {e+1}/{args.epochs}")
|
| 218 |
+
t1 = time.time()
|
| 219 |
+
|
| 220 |
+
train(model, train_dl, loss_ce, opt, device, train_list)
|
| 221 |
+
|
| 222 |
+
val_iou = test(model, val_dl, loss_ce, device, evaluator, val_list)
|
| 223 |
+
|
| 224 |
+
if val_iou > best_val_iou:
|
| 225 |
+
print(f"✓ Best model updated! IoU improved from {best_val_iou:.4f} to {val_iou:.4f}")
|
| 226 |
+
best_val_iou = val_iou
|
| 227 |
+
best_model_weight = copy.deepcopy(model.state_dict())
|
| 228 |
+
|
| 229 |
+
# Save best model
|
| 230 |
+
save_path = os.path.join(args.save_dir, args.model_name)
|
| 231 |
+
torch.save(best_model_weight, save_path)
|
| 232 |
+
print(f"Model saved to {save_path}")
|
| 233 |
+
|
| 234 |
+
scheduler.step()
|
| 235 |
+
print(f"Learning Rate: {scheduler.get_last_lr()}")
|
| 236 |
+
|
| 237 |
+
t2 = time.time()
|
| 238 |
+
print(f"Epoch Time: {t2 - t1:.2f} seconds")
|
| 239 |
+
print("-"*60)
|
| 240 |
+
|
| 241 |
+
print("\n" + "="*60)
|
| 242 |
+
print(f"Training completed! Best IoU: {best_val_iou:.4f}")
|
| 243 |
+
print("="*60)
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
if __name__ == "__main__":
|
| 247 |
+
main()
|
method/CSSM.ipynb
ADDED
|
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 1,
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"outputs": [],
|
| 8 |
+
"source": [
|
| 9 |
+
"from Mamba import Mamba\n",
|
| 10 |
+
"import torch"
|
| 11 |
+
]
|
| 12 |
+
},
|
| 13 |
+
{
|
| 14 |
+
"cell_type": "code",
|
| 15 |
+
"execution_count": 2,
|
| 16 |
+
"metadata": {},
|
| 17 |
+
"outputs": [],
|
| 18 |
+
"source": [
|
| 19 |
+
"x = torch.rand(size = (1,5,16))\n",
|
| 20 |
+
"\n",
|
| 21 |
+
"num_layers = 5\n",
|
| 22 |
+
"d_model = 16\n",
|
| 23 |
+
"d_state = 16\n",
|
| 24 |
+
"d_conv = 4\n",
|
| 25 |
+
"\n",
|
| 26 |
+
"mamba = Mamba(num_layers=num_layers,d_model=d_model, d_conv=d_conv, d_state=d_state)"
|
| 27 |
+
]
|
| 28 |
+
},
|
| 29 |
+
{
|
| 30 |
+
"cell_type": "code",
|
| 31 |
+
"execution_count": 3,
|
| 32 |
+
"metadata": {},
|
| 33 |
+
"outputs": [
|
| 34 |
+
{
|
| 35 |
+
"name": "stdout",
|
| 36 |
+
"output_type": "stream",
|
| 37 |
+
"text": [
|
| 38 |
+
"torch.Size([1, 5, 32, 16])\n",
|
| 39 |
+
"torch.Size([1, 5, 32, 16])\n",
|
| 40 |
+
"torch.Size([1, 5, 32, 16])\n",
|
| 41 |
+
"torch.Size([1, 5, 32, 16])\n",
|
| 42 |
+
"torch.Size([1, 5, 32, 16])\n"
|
| 43 |
+
]
|
| 44 |
+
}
|
| 45 |
+
],
|
| 46 |
+
"source": [
|
| 47 |
+
"y1,y2 = mamba(x,x)"
|
| 48 |
+
]
|
| 49 |
+
},
|
| 50 |
+
{
|
| 51 |
+
"cell_type": "code",
|
| 52 |
+
"execution_count": 4,
|
| 53 |
+
"metadata": {},
|
| 54 |
+
"outputs": [
|
| 55 |
+
{
|
| 56 |
+
"data": {
|
| 57 |
+
"text/plain": [
|
| 58 |
+
"torch.Size([1, 5, 16])"
|
| 59 |
+
]
|
| 60 |
+
},
|
| 61 |
+
"execution_count": 4,
|
| 62 |
+
"metadata": {},
|
| 63 |
+
"output_type": "execute_result"
|
| 64 |
+
}
|
| 65 |
+
],
|
| 66 |
+
"source": [
|
| 67 |
+
"y2.shape"
|
| 68 |
+
]
|
| 69 |
+
},
|
| 70 |
+
{
|
| 71 |
+
"cell_type": "code",
|
| 72 |
+
"execution_count": 7,
|
| 73 |
+
"metadata": {},
|
| 74 |
+
"outputs": [
|
| 75 |
+
{
|
| 76 |
+
"ename": "TypeError",
|
| 77 |
+
"evalue": "include_paths() got an unexpected keyword argument 'cuda'",
|
| 78 |
+
"output_type": "error",
|
| 79 |
+
"traceback": [
|
| 80 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
| 81 |
+
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
|
| 82 |
+
"Cell \u001b[0;32mIn[7], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21;01mxlstm\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;28;01mimport\u001b[39;00m (\n\u001b[1;32m 2\u001b[0m xLSTMBlockStack,\n\u001b[1;32m 3\u001b[0m xLSTMBlockStackConfig,\n\u001b[1;32m 4\u001b[0m mLSTMBlockConfig,\n\u001b[1;32m 5\u001b[0m mLSTMLayerConfig,\n\u001b[1;32m 6\u001b[0m sLSTMBlockConfig,\n\u001b[1;32m 7\u001b[0m sLSTMLayerConfig,\n\u001b[1;32m 8\u001b[0m FeedForwardConfig,\n\u001b[1;32m 9\u001b[0m )\n\u001b[1;32m 11\u001b[0m cfg \u001b[38;5;241m=\u001b[39m xLSTMBlockStackConfig(\n\u001b[1;32m 12\u001b[0m mlstm_block\u001b[38;5;241m=\u001b[39mmLSTMBlockConfig(\n\u001b[1;32m 13\u001b[0m mlstm\u001b[38;5;241m=\u001b[39mmLSTMLayerConfig(\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 30\u001b[0m \n\u001b[1;32m 31\u001b[0m )\n\u001b[1;32m 33\u001b[0m xlstm_stack \u001b[38;5;241m=\u001b[39m xLSTMBlockStack(cfg)\n",
|
| 83 |
+
"File \u001b[0;32m~/anaconda3/envs/CDDD/lib/python3.13/site-packages/xlstm/__init__.py:3\u001b[0m\n\u001b[1;32m 1\u001b[0m __version__ \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m2.0.2\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m----> 3\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mblocks\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mmlstm\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mblock\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;28;01mimport\u001b[39;00m mLSTMBlock, mLSTMBlockConfig\n\u001b[1;32m 4\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mblocks\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mmlstm\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mlayer\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;28;01mimport\u001b[39;00m mLSTMLayer, mLSTMLayerConfig\n\u001b[1;32m 5\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mblocks\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mslstm\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mblock\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;28;01mimport\u001b[39;00m sLSTMBlock, sLSTMBlockConfig\n",
|
| 84 |
+
"File \u001b[0;32m~/anaconda3/envs/CDDD/lib/python3.13/site-packages/xlstm/blocks/mlstm/block.py:5\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;66;03m# Copyright (c) NXAI GmbH and its affiliates 2024\u001b[39;00m\n\u001b[1;32m 2\u001b[0m \u001b[38;5;66;03m# Maximilian Beck\u001b[39;00m\n\u001b[1;32m 3\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21;01mdataclasses\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;28;01mimport\u001b[39;00m dataclass, field\n\u001b[0;32m----> 5\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mxlstm_block\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;28;01mimport\u001b[39;00m xLSTMBlock, xLSTMBlockConfig\n\u001b[1;32m 6\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mlayer\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;28;01mimport\u001b[39;00m mLSTMLayerConfig\n\u001b[1;32m 9\u001b[0m \u001b[38;5;129m@dataclass\u001b[39m\n\u001b[1;32m 10\u001b[0m \u001b[38;5;28;01mclass\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21;01mmLSTMBlockConfig\u001b[39;00m:\n",
|
| 85 |
+
"File \u001b[0;32m~/anaconda3/envs/CDDD/lib/python3.13/site-packages/xlstm/blocks/xlstm_block.py:12\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mcomponents\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mln\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;28;01mimport\u001b[39;00m LayerNorm\n\u001b[1;32m 11\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mmlstm\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mlayer\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;28;01mimport\u001b[39;00m mLSTMLayer, mLSTMLayerConfig\n\u001b[0;32m---> 12\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mslstm\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mlayer\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;28;01mimport\u001b[39;00m sLSTMLayer, sLSTMLayerConfig\n\u001b[1;32m 16\u001b[0m \u001b[38;5;129m@dataclass\u001b[39m\n\u001b[1;32m 17\u001b[0m \u001b[38;5;28;01mclass\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21;01mxLSTMBlockConfig\u001b[39;00m:\n\u001b[1;32m 18\u001b[0m mlstm: Optional[mLSTMLayerConfig] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n",
|
| 86 |
+
"File \u001b[0;32m~/anaconda3/envs/CDDD/lib/python3.13/site-packages/xlstm/blocks/slstm/layer.py:15\u001b[0m\n\u001b[1;32m 12\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mcomponents\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01minit\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;28;01mimport\u001b[39;00m small_init_init_\n\u001b[1;32m 14\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21;01mtorch\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;28;01mimport\u001b[39;00m nn\n\u001b[0;32m---> 15\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mcell\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;28;01mimport\u001b[39;00m sLSTMCell, sLSTMCellConfig\n\u001b[1;32m 18\u001b[0m \u001b[38;5;129m@dataclass\u001b[39m\n\u001b[1;32m 19\u001b[0m \u001b[38;5;28;01mclass\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21;01msLSTMLayerConfig\u001b[39;00m(sLSTMCellConfig):\n\u001b[1;32m 20\u001b[0m embedding_dim: \u001b[38;5;28mint\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m\n",
|
| 87 |
+
"File \u001b[0;32m~/anaconda3/envs/CDDD/lib/python3.13/site-packages/xlstm/blocks/slstm/cell.py:12\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21;01mtorch\u001b[39;00m\n\u001b[1;32m 11\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21;01mtorch\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mautograd\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mfunction\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;28;01mimport\u001b[39;00m once_differentiable\n\u001b[0;32m---> 12\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01msrc\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mcuda_init\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;28;01mimport\u001b[39;00m load\n\u001b[1;32m 13\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01msrc\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mvanilla\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;28;01mimport\u001b[39;00m (\n\u001b[1;32m 14\u001b[0m slstm_forward,\n\u001b[1;32m 15\u001b[0m slstm_forward_step,\n\u001b[1;32m 16\u001b[0m slstm_pointwise_function_registry,\n\u001b[1;32m 17\u001b[0m )\n\u001b[1;32m 18\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mcomponents\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mutil\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;28;01mimport\u001b[39;00m conditional_decorator, round_to_multiple, ParameterProxy\n",
|
| 88 |
+
"File \u001b[0;32m~/anaconda3/envs/CDDD/lib/python3.13/site-packages/xlstm/blocks/slstm/src/cuda_init.py:30\u001b[0m\n\u001b[1;32m 27\u001b[0m curdir \u001b[38;5;241m=\u001b[39m os\u001b[38;5;241m.\u001b[39mpath\u001b[38;5;241m.\u001b[39mdirname(\u001b[38;5;18m__file__\u001b[39m)\n\u001b[1;32m 29\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m torch\u001b[38;5;241m.\u001b[39mcuda\u001b[38;5;241m.\u001b[39mis_available():\n\u001b[0;32m---> 30\u001b[0m os\u001b[38;5;241m.\u001b[39menviron[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCUDA_LIB\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m os\u001b[38;5;241m.\u001b[39mpath\u001b[38;5;241m.\u001b[39mjoin(os\u001b[38;5;241m.\u001b[39mpath\u001b[38;5;241m.\u001b[39msplit(\u001b[43mtorch\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mutils\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcpp_extension\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minclude_paths\u001b[49m\u001b[43m(\u001b[49m\u001b[43mcuda\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m)\u001b[49m[\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m])[\u001b[38;5;241m0\u001b[39m], \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mlib\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 33\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21mload\u001b[39m(\u001b[38;5;241m*\u001b[39m, name, sources, extra_cflags\u001b[38;5;241m=\u001b[39m(), extra_cuda_cflags\u001b[38;5;241m=\u001b[39m(), \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[1;32m 34\u001b[0m suffix \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m\n",
|
| 89 |
+
"\u001b[0;31mTypeError\u001b[0m: include_paths() got an unexpected keyword argument 'cuda'"
|
| 90 |
+
]
|
| 91 |
+
}
|
| 92 |
+
],
|
| 93 |
+
"source": [
|
| 94 |
+
"from xlstm import (\n",
|
| 95 |
+
" xLSTMBlockStack,\n",
|
| 96 |
+
" xLSTMBlockStackConfig,\n",
|
| 97 |
+
" mLSTMBlockConfig,\n",
|
| 98 |
+
" mLSTMLayerConfig,\n",
|
| 99 |
+
" sLSTMBlockConfig,\n",
|
| 100 |
+
" sLSTMLayerConfig,\n",
|
| 101 |
+
" FeedForwardConfig,\n",
|
| 102 |
+
")\n",
|
| 103 |
+
"\n",
|
| 104 |
+
"cfg = xLSTMBlockStackConfig(\n",
|
| 105 |
+
" mlstm_block=mLSTMBlockConfig(\n",
|
| 106 |
+
" mlstm=mLSTMLayerConfig(\n",
|
| 107 |
+
" conv1d_kernel_size=4, qkv_proj_blocksize=4, num_heads=4\n",
|
| 108 |
+
" )\n",
|
| 109 |
+
" ),\n",
|
| 110 |
+
" slstm_block=sLSTMBlockConfig(\n",
|
| 111 |
+
" slstm=sLSTMLayerConfig(\n",
|
| 112 |
+
" # backend=,\n",
|
| 113 |
+
" num_heads=4,\n",
|
| 114 |
+
" conv1d_kernel_size=4,\n",
|
| 115 |
+
" bias_init=\"powerlaw_blockdependent\",\n",
|
| 116 |
+
" ),\n",
|
| 117 |
+
" feedforward=FeedForwardConfig(proj_factor=1.3, act_fn=\"gelu\"),\n",
|
| 118 |
+
" ),\n",
|
| 119 |
+
" context_length=256,\n",
|
| 120 |
+
" num_blocks=7,\n",
|
| 121 |
+
" embedding_dim=128,\n",
|
| 122 |
+
" slstm_at=[1],\n",
|
| 123 |
+
"\n",
|
| 124 |
+
")\n",
|
| 125 |
+
"\n",
|
| 126 |
+
"xlstm_stack = xLSTMBlockStack(cfg)\n",
|
| 127 |
+
"\n",
|
| 128 |
+
"x = torch.randn(4, 256, 128).to(torch.device(\"cuda\"))\n",
|
| 129 |
+
"xlstm_stack = xlstm_stack.to(torch.device(\"cuda\"))"
|
| 130 |
+
]
|
| 131 |
+
},
|
| 132 |
+
{
|
| 133 |
+
"cell_type": "code",
|
| 134 |
+
"execution_count": 16,
|
| 135 |
+
"metadata": {},
|
| 136 |
+
"outputs": [],
|
| 137 |
+
"source": [
|
| 138 |
+
"import os \n",
|
| 139 |
+
"import pandas as pd\n",
|
| 140 |
+
"import numpy as np\n",
|
| 141 |
+
"\n",
|
| 142 |
+
"t = os.path.join(\"/media/elman/backup/DG_CD/WHU-CD-256/list/train.txt\")"
|
| 143 |
+
]
|
| 144 |
+
},
|
| 145 |
+
{
|
| 146 |
+
"cell_type": "code",
|
| 147 |
+
"execution_count": 24,
|
| 148 |
+
"metadata": {},
|
| 149 |
+
"outputs": [],
|
| 150 |
+
"source": [
|
| 151 |
+
"f = np.array((pd.read_csv(t,names=[\"ttt\"])))"
|
| 152 |
+
]
|
| 153 |
+
},
|
| 154 |
+
{
|
| 155 |
+
"cell_type": "code",
|
| 156 |
+
"execution_count": null,
|
| 157 |
+
"metadata": {},
|
| 158 |
+
"outputs": [],
|
| 159 |
+
"source": []
|
| 160 |
+
},
|
| 161 |
+
{
|
| 162 |
+
"cell_type": "code",
|
| 163 |
+
"execution_count": 27,
|
| 164 |
+
"metadata": {},
|
| 165 |
+
"outputs": [
|
| 166 |
+
{
|
| 167 |
+
"data": {
|
| 168 |
+
"text/plain": [
|
| 169 |
+
"'whucd_00267.png'"
|
| 170 |
+
]
|
| 171 |
+
},
|
| 172 |
+
"execution_count": 27,
|
| 173 |
+
"metadata": {},
|
| 174 |
+
"output_type": "execute_result"
|
| 175 |
+
}
|
| 176 |
+
],
|
| 177 |
+
"source": [
|
| 178 |
+
"f[1].item()"
|
| 179 |
+
]
|
| 180 |
+
},
|
| 181 |
+
{
|
| 182 |
+
"cell_type": "code",
|
| 183 |
+
"execution_count": null,
|
| 184 |
+
"metadata": {},
|
| 185 |
+
"outputs": [],
|
| 186 |
+
"source": []
|
| 187 |
+
}
|
| 188 |
+
],
|
| 189 |
+
"metadata": {
|
| 190 |
+
"kernelspec": {
|
| 191 |
+
"display_name": "CDDD",
|
| 192 |
+
"language": "python",
|
| 193 |
+
"name": "python3"
|
| 194 |
+
},
|
| 195 |
+
"language_info": {
|
| 196 |
+
"codemirror_mode": {
|
| 197 |
+
"name": "ipython",
|
| 198 |
+
"version": 3
|
| 199 |
+
},
|
| 200 |
+
"file_extension": ".py",
|
| 201 |
+
"mimetype": "text/x-python",
|
| 202 |
+
"name": "python",
|
| 203 |
+
"nbconvert_exporter": "python",
|
| 204 |
+
"pygments_lexer": "ipython3",
|
| 205 |
+
"version": "3.13.2"
|
| 206 |
+
}
|
| 207 |
+
},
|
| 208 |
+
"nbformat": 4,
|
| 209 |
+
"nbformat_minor": 2
|
| 210 |
+
}
|
method/MambaCSSM.py
ADDED
|
@@ -0,0 +1,382 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import math
|
| 3 |
+
import json
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
import torch.nn.functional as F
|
| 7 |
+
from dataclasses import dataclass
|
| 8 |
+
from einops import rearrange, repeat, einsum
|
| 9 |
+
from typing import Union
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
@dataclass
|
| 15 |
+
class ModelArgs:
|
| 16 |
+
d_model: int
|
| 17 |
+
n_layer: int
|
| 18 |
+
vocab_size: int
|
| 19 |
+
d_state: int = 16
|
| 20 |
+
expand: int = 2
|
| 21 |
+
dt_rank: Union[int, str] = 'auto'
|
| 22 |
+
d_conv: int = 4
|
| 23 |
+
pad_vocab_size_multiple: int = 8
|
| 24 |
+
conv_bias: bool = True
|
| 25 |
+
bias: bool = False
|
| 26 |
+
|
| 27 |
+
def __post_init__(self):
|
| 28 |
+
self.d_inner = int(self.expand * self.d_model)
|
| 29 |
+
|
| 30 |
+
if self.dt_rank == 'auto':
|
| 31 |
+
self.dt_rank = math.ceil(self.d_model / 16)
|
| 32 |
+
|
| 33 |
+
if self.vocab_size % self.pad_vocab_size_multiple != 0:
|
| 34 |
+
self.vocab_size += (self.pad_vocab_size_multiple
|
| 35 |
+
- self.vocab_size % self.pad_vocab_size_multiple)
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
class MambaBlock_CD(nn.Module):
|
| 43 |
+
def __init__(self, d_model,d_conv, d_state, bias = True, conv_bias = True):
|
| 44 |
+
"""A single Mamba block, as described in Figure 3 in Section 3.4 in the Mamba paper [1]."""
|
| 45 |
+
super().__init__()
|
| 46 |
+
# self.args = args
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
self.norm = RMSNorm(d_model=d_model)
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
self.d_inner = 2 * d_model
|
| 53 |
+
self.dt_rank = math.ceil(d_model / 16)
|
| 54 |
+
|
| 55 |
+
self.in_proj = nn.Linear(d_model, self.d_inner * 2, bias=bias)
|
| 56 |
+
|
| 57 |
+
self.mlp_1 = nn.Linear(self.d_inner, d_model)
|
| 58 |
+
self.mlp_2 = nn.Linear(self.d_inner, d_model)
|
| 59 |
+
|
| 60 |
+
self.conv1d = nn.Conv1d(
|
| 61 |
+
in_channels=self.d_inner,
|
| 62 |
+
out_channels=self.d_inner,
|
| 63 |
+
bias=conv_bias,
|
| 64 |
+
kernel_size=d_conv,
|
| 65 |
+
groups=self.d_inner,
|
| 66 |
+
padding=d_conv - 1,
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
# x_proj takes in `x` and outputs the input-specific Δ, B, C
|
| 70 |
+
self.x_proj = nn.Linear(self.d_inner, self.dt_rank + d_state * 2, bias=False)
|
| 71 |
+
|
| 72 |
+
# dt_proj projects Δ from dt_rank to d_in
|
| 73 |
+
self.dt_proj = nn.Linear(self.dt_rank, self.d_inner, bias=True)
|
| 74 |
+
|
| 75 |
+
A = repeat(torch.arange(1, d_state + 1), 'n -> d n', d=self.d_inner)
|
| 76 |
+
self.A_log = nn.Parameter(torch.log(A))
|
| 77 |
+
self.D = nn.Parameter(torch.ones(self.d_inner))
|
| 78 |
+
self.D_p = nn.Parameter(torch.ones(self.d_inner))
|
| 79 |
+
self.out_proj = nn.Linear(self.d_inner, d_model, bias=bias)
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
def forward(self, t1,t2):
|
| 83 |
+
|
| 84 |
+
ee1 = t1
|
| 85 |
+
ee2 = t2
|
| 86 |
+
|
| 87 |
+
(b, l, d) = t1.shape
|
| 88 |
+
t1 = self.norm(t1)
|
| 89 |
+
|
| 90 |
+
t1_and_res = self.in_proj(t1) # shape (b, l, 2 * d_in)
|
| 91 |
+
(t1, res1) = t1_and_res.split(split_size=[self.d_inner, self.d_inner], dim=-1)
|
| 92 |
+
|
| 93 |
+
t1 = rearrange(t1, 'b l d_in -> b d_in l')
|
| 94 |
+
t1 = self.conv1d(t1)[:, :, :l]
|
| 95 |
+
t1 = rearrange(t1, 'b d_in l -> b l d_in')
|
| 96 |
+
|
| 97 |
+
t1 = F.silu(t1)
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
(b, l, d) = t2.shape
|
| 101 |
+
t2 = self.norm(t2)
|
| 102 |
+
|
| 103 |
+
t2_and_res = self.in_proj(t2) # shape (b, l, 2 * d_in)
|
| 104 |
+
(t2, res2) = t2_and_res.split(split_size=[self.d_inner, self.d_inner], dim=-1)
|
| 105 |
+
|
| 106 |
+
t2 = rearrange(t2, 'b l d_in -> b d_in l')
|
| 107 |
+
t2 = self.conv1d(t2)[:, :, :l]
|
| 108 |
+
t2 = rearrange(t2, 'b d_in l -> b l d_in')
|
| 109 |
+
|
| 110 |
+
t2 = F.silu(t2)
|
| 111 |
+
|
| 112 |
+
y1,y2 = self.cssm(t1,t2)
|
| 113 |
+
|
| 114 |
+
y1 = y1 * F.silu(res1)
|
| 115 |
+
y2 = y2 * F.silu(res2)
|
| 116 |
+
|
| 117 |
+
output1 = self.out_proj(y1)
|
| 118 |
+
output2 = self.out_proj(y2)
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
return output1 + ee1, output2 + ee2
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
def cssm(self, t1, t2):
|
| 126 |
+
|
| 127 |
+
(d_in, n) = self.A_log.shape
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
A = -torch.exp(self.A_log.float()) # shape (d_in, n)
|
| 131 |
+
D = self.D.float()
|
| 132 |
+
|
| 133 |
+
t1_dbl = self.x_proj(t1) # (b, l, dt_rank + 2*n)
|
| 134 |
+
|
| 135 |
+
(delta, B, C) = t1_dbl.split(split_size=[self.dt_rank, n, n], dim=-1) # delta: (b, l, dt_rank). B, C: (b, l, n)
|
| 136 |
+
delta = F.softplus(self.dt_proj(delta)) # (b, l, d_in)
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
A_prim = -torch.exp(self.A_log.float()) # shape (d_in, n)
|
| 140 |
+
D_prim = self.D_p.float()
|
| 141 |
+
|
| 142 |
+
t2_dbl = self.x_proj(t2) # (b, l, dt_rank + 2*n)
|
| 143 |
+
|
| 144 |
+
(delta, B_prim, C_prim) = t2_dbl.split(split_size=[self.dt_rank, n, n], dim=-1) # delta: (b, l, dt_rank). B, C: (b, l, n)
|
| 145 |
+
delta = F.softplus(self.dt_proj(delta)) # (b, l, d_in)
|
| 146 |
+
|
| 147 |
+
y = self.selective_scan(t1,t2, delta, A, B, C, D, A_prim, B_prim, C_prim, D_prim) # This is similar to run_SSM(A, B, C, u) in The Annotated S4 [2]
|
| 148 |
+
|
| 149 |
+
return y
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
def selective_scan(self, t1,t2, delta, A, B, C, D, A_prim, B_prim, C_prim, D_prim):
|
| 153 |
+
|
| 154 |
+
(b, l, d_in) = t1.shape
|
| 155 |
+
n = A.shape[1]
|
| 156 |
+
|
| 157 |
+
deltaA = torch.exp(einsum(delta, A, 'b l d_in, d_in n -> b l d_in n'))
|
| 158 |
+
deltaB_u = einsum(delta, B, t1, 'b l d_in, b l n, b l d_in -> b l d_in n')
|
| 159 |
+
deltaB_u_prim = einsum(delta, B_prim, t2, 'b l d_in, b l n, b l d_in -> b l d_in n')
|
| 160 |
+
|
| 161 |
+
x = torch.zeros((b, d_in, n), device=deltaA.device)
|
| 162 |
+
ys = []
|
| 163 |
+
for i in range(l):
|
| 164 |
+
x = deltaA[:, i] * x + torch.abs(deltaB_u[:, i] - deltaB_u_prim[:,i])
|
| 165 |
+
y1 = einsum(x, C[:, i, :], 'b d_in n, b n -> b d_in')
|
| 166 |
+
ys.append(y1)
|
| 167 |
+
y1 = torch.stack(ys, dim=1) # shape (b, l, d_in)
|
| 168 |
+
|
| 169 |
+
y1 = y1 + t1 * D
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
(b, l, d_in) = t2.shape
|
| 173 |
+
n = A_prim.shape[1]
|
| 174 |
+
|
| 175 |
+
deltaA_prim = torch.exp(einsum(delta, A_prim, 'b l d_in, d_in n -> b l d_in n'))
|
| 176 |
+
# deltaB_u = einsum(delta, B, u, 'b l d_in, b l n, b l d_in -> b l d_in n')
|
| 177 |
+
|
| 178 |
+
x = torch.zeros((b, d_in, n), device=deltaA.device)
|
| 179 |
+
ys = []
|
| 180 |
+
for i in range(l):
|
| 181 |
+
x = deltaA_prim[:, i] * x + torch.abs(deltaB_u[:, i] - deltaB_u_prim[:,i])
|
| 182 |
+
y2 = einsum(x, C_prim[:, i, :], 'b d_in n, b n -> b d_in')
|
| 183 |
+
ys.append(y2)
|
| 184 |
+
y2 = torch.stack(ys, dim=1) # shape (b, l, d_in)
|
| 185 |
+
|
| 186 |
+
y2 = y2 + t2 * D_prim
|
| 187 |
+
|
| 188 |
+
return y1 ,y2
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
class MambaCSSM(nn.Module):
|
| 195 |
+
|
| 196 |
+
def __init__(self, num_layers, d_model,d_conv, d_state, bias = True, conv_bias = True ):
|
| 197 |
+
super().__init__()
|
| 198 |
+
|
| 199 |
+
self.layers = nn.ModuleList([MambaBlock_CD(d_model,d_conv, d_state, bias = True, conv_bias = True) for _ in range(num_layers)])
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
def forward(self, t1,t2):
|
| 203 |
+
|
| 204 |
+
for layer in self.layers:
|
| 205 |
+
t1,t2 = layer(t1,t2)
|
| 206 |
+
|
| 207 |
+
return t1,t2
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
class MambaBlock(nn.Module):
|
| 216 |
+
def __init__(self, d_model,d_conv, d_state, bias = True, conv_bias = True):
|
| 217 |
+
"""A single Mamba block, as described in Figure 3 in Section 3.4 in the Mamba paper [1]."""
|
| 218 |
+
super().__init__()
|
| 219 |
+
# self.args = args
|
| 220 |
+
|
| 221 |
+
|
| 222 |
+
self.d_inner = 2 * d_model
|
| 223 |
+
self.dt_rank = math.ceil(d_model / 16)
|
| 224 |
+
|
| 225 |
+
self.in_proj = nn.Linear(d_model, self.d_inner * 2, bias=bias)
|
| 226 |
+
|
| 227 |
+
self.conv1d = nn.Conv1d(
|
| 228 |
+
in_channels=self.d_inner,
|
| 229 |
+
out_channels=self.d_inner,
|
| 230 |
+
bias=conv_bias,
|
| 231 |
+
kernel_size=d_conv,
|
| 232 |
+
groups=self.d_inner,
|
| 233 |
+
padding=d_conv - 1,
|
| 234 |
+
)
|
| 235 |
+
|
| 236 |
+
# x_proj takes in `x` and outputs the input-specific Δ, B, C
|
| 237 |
+
self.x_proj = nn.Linear(self.d_inner, self.dt_rank + d_state * 2, bias=False)
|
| 238 |
+
|
| 239 |
+
# dt_proj projects Δ from dt_rank to d_in
|
| 240 |
+
self.dt_proj = nn.Linear(self.dt_rank, self.d_inner, bias=True)
|
| 241 |
+
|
| 242 |
+
A = repeat(torch.arange(1, d_state + 1), 'n -> d n', d=self.d_inner)
|
| 243 |
+
self.A_log = nn.Parameter(torch.log(A))
|
| 244 |
+
self.D = nn.Parameter(torch.ones(self.d_inner))
|
| 245 |
+
self.out_proj = nn.Linear(self.d_inner, d_model, bias=bias)
|
| 246 |
+
|
| 247 |
+
|
| 248 |
+
def forward(self, x):
|
| 249 |
+
"""Mamba block forward. This looks the same as Figure 3 in Section 3.4 in the Mamba paper [1].
|
| 250 |
+
|
| 251 |
+
Args:
|
| 252 |
+
x: shape (b, l, d) (See Glossary at top for definitions of b, l, d_in, n...)
|
| 253 |
+
|
| 254 |
+
Returns:
|
| 255 |
+
output: shape (b, l, d)
|
| 256 |
+
|
| 257 |
+
Official Implementation:
|
| 258 |
+
class Mamba, https://github.com/state-spaces/mamba/blob/main/mamba_ssm/modules/mamba_simple.py#L119
|
| 259 |
+
mamba_inner_ref(), https://github.com/state-spaces/mamba/blob/main/mamba_ssm/ops/selective_scan_interface.py#L311
|
| 260 |
+
|
| 261 |
+
"""
|
| 262 |
+
(b, l, d) = x.shape
|
| 263 |
+
|
| 264 |
+
x_and_res = self.in_proj(x) # shape (b, l, 2 * d_in)
|
| 265 |
+
(x, res) = x_and_res.split(split_size=[self.d_inner, self.d_inner], dim=-1)
|
| 266 |
+
|
| 267 |
+
x = rearrange(x, 'b l d_in -> b d_in l')
|
| 268 |
+
x = self.conv1d(x)[:, :, :l]
|
| 269 |
+
x = rearrange(x, 'b d_in l -> b l d_in')
|
| 270 |
+
|
| 271 |
+
x = F.silu(x)
|
| 272 |
+
|
| 273 |
+
y = self.ssm(x)
|
| 274 |
+
|
| 275 |
+
y = y * F.silu(res)
|
| 276 |
+
|
| 277 |
+
output = self.out_proj(y)
|
| 278 |
+
|
| 279 |
+
return output
|
| 280 |
+
|
| 281 |
+
|
| 282 |
+
def ssm(self, x):
|
| 283 |
+
"""Runs the SSM. See:
|
| 284 |
+
- Algorithm 2 in Section 3.2 in the Mamba paper [1]
|
| 285 |
+
- run_SSM(A, B, C, u) in The Annotated S4 [2]
|
| 286 |
+
|
| 287 |
+
Args:
|
| 288 |
+
x: shape (b, l, d_in) (See Glossary at top for definitions of b, l, d_in, n...)
|
| 289 |
+
|
| 290 |
+
Returns:
|
| 291 |
+
output: shape (b, l, d_in)
|
| 292 |
+
|
| 293 |
+
Official Implementation:
|
| 294 |
+
mamba_inner_ref(), https://github.com/state-spaces/mamba/blob/main/mamba_ssm/ops/selective_scan_interface.py#L311
|
| 295 |
+
|
| 296 |
+
"""
|
| 297 |
+
(d_in, n) = self.A_log.shape
|
| 298 |
+
|
| 299 |
+
# Compute ∆ A B C D, the state space parameters.
|
| 300 |
+
# A, D are input independent (see Mamba paper [1] Section 3.5.2 "Interpretation of A" for why A isn't selective)
|
| 301 |
+
# ∆, B, C are input-dependent (this is a key difference between Mamba and the linear time invariant S4,
|
| 302 |
+
# and is why Mamba is called **selective** state spaces)
|
| 303 |
+
|
| 304 |
+
A = -torch.exp(self.A_log.float()) # shape (d_in, n)
|
| 305 |
+
D = self.D.float()
|
| 306 |
+
|
| 307 |
+
x_dbl = self.x_proj(x) # (b, l, dt_rank + 2*n)
|
| 308 |
+
|
| 309 |
+
(delta, B, C) = x_dbl.split(split_size=[self.dt_rank, n, n], dim=-1) # delta: (b, l, dt_rank). B, C: (b, l, n)
|
| 310 |
+
delta = F.softplus(self.dt_proj(delta)) # (b, l, d_in)
|
| 311 |
+
|
| 312 |
+
y = self.selective_scan(x, delta, A, B, C, D) # This is similar to run_SSM(A, B, C, u) in The Annotated S4 [2]
|
| 313 |
+
|
| 314 |
+
return y
|
| 315 |
+
|
| 316 |
+
|
| 317 |
+
def selective_scan(self, u, delta, A, B, C, D):
|
| 318 |
+
"""Does selective scan algorithm. See:
|
| 319 |
+
- Section 2 State Space Models in the Mamba paper [1]
|
| 320 |
+
- Algorithm 2 in Section 3.2 in the Mamba paper [1]
|
| 321 |
+
- run_SSM(A, B, C, u) in The Annotated S4 [2]
|
| 322 |
+
|
| 323 |
+
This is the classic discrete state space formula:
|
| 324 |
+
x(t + 1) = Ax(t) + Bu(t)
|
| 325 |
+
y(t) = Cx(t) + Du(t)
|
| 326 |
+
except B and C (and the step size delta, which is used for discretization) are dependent on the input x(t).
|
| 327 |
+
|
| 328 |
+
Args:
|
| 329 |
+
u: shape (b, l, d_in) (See Glossary at top for definitions of b, l, d_in, n...)
|
| 330 |
+
delta: shape (b, l, d_in)
|
| 331 |
+
A: shape (d_in, n)
|
| 332 |
+
B: shape (b, l, n)
|
| 333 |
+
C: shape (b, l, n)
|
| 334 |
+
D: shape (d_in,)
|
| 335 |
+
|
| 336 |
+
Returns:
|
| 337 |
+
output: shape (b, l, d_in)
|
| 338 |
+
|
| 339 |
+
Official Implementation:
|
| 340 |
+
selective_scan_ref(), https://github.com/state-spaces/mamba/blob/main/mamba_ssm/ops/selective_scan_interface.py#L86
|
| 341 |
+
Note: I refactored some parts out of `selective_scan_ref` out, so the functionality doesn't match exactly.
|
| 342 |
+
|
| 343 |
+
"""
|
| 344 |
+
(b, l, d_in) = u.shape
|
| 345 |
+
n = A.shape[1]
|
| 346 |
+
|
| 347 |
+
# Discretize continuous parameters (A, B)
|
| 348 |
+
# - A is discretized using zero-order hold (ZOH) discretization (see Section 2 Equation 4 in the Mamba paper [1])
|
| 349 |
+
# - B is discretized using a simplified Euler discretization instead of ZOH. From a discussion with authors:
|
| 350 |
+
# "A is the more important term and the performance doesn't change much with the simplification on B"
|
| 351 |
+
deltaA = torch.exp(einsum(delta, A, 'b l d_in, d_in n -> b l d_in n'))
|
| 352 |
+
deltaB_u = einsum(delta, B, u, 'b l d_in, b l n, b l d_in -> b l d_in n')
|
| 353 |
+
|
| 354 |
+
# Perform selective scan (see scan_SSM() in The Annotated S4 [2])
|
| 355 |
+
# Note that the below is sequential, while the official implementation does a much faster parallel scan that
|
| 356 |
+
# is additionally hardware-aware (like FlashAttention).
|
| 357 |
+
x = torch.zeros((b, d_in, n), device=deltaA.device)
|
| 358 |
+
ys = []
|
| 359 |
+
for i in range(l):
|
| 360 |
+
x = deltaA[:, i] * x + deltaB_u[:, i]
|
| 361 |
+
y = einsum(x, C[:, i, :], 'b d_in n, b n -> b d_in')
|
| 362 |
+
ys.append(y)
|
| 363 |
+
y = torch.stack(ys, dim=1) # shape (b, l, d_in)
|
| 364 |
+
|
| 365 |
+
y = y + u * D
|
| 366 |
+
|
| 367 |
+
return y
|
| 368 |
+
|
| 369 |
+
|
| 370 |
+
class RMSNorm(nn.Module):
|
| 371 |
+
def __init__(self,
|
| 372 |
+
d_model: int,
|
| 373 |
+
eps: float = 1e-5):
|
| 374 |
+
super().__init__()
|
| 375 |
+
self.eps = eps
|
| 376 |
+
self.weight = nn.Parameter(torch.ones(d_model))
|
| 377 |
+
|
| 378 |
+
|
| 379 |
+
def forward(self, x):
|
| 380 |
+
output = x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) * self.weight
|
| 381 |
+
|
| 382 |
+
return output
|
method/Model.py
ADDED
|
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from torch import nn
|
| 2 |
+
import torch
|
| 3 |
+
from method.MambaCSSM import MambaCSSM
|
| 4 |
+
|
| 5 |
+
class MambaCSSMUnet(nn.Module):
|
| 6 |
+
|
| 7 |
+
def __init__(self, output_classes = 2):
|
| 8 |
+
super(MambaCSSMUnet, self).__init__()
|
| 9 |
+
|
| 10 |
+
#### Encoder Conv
|
| 11 |
+
self.conv_block_1 = nn.Sequential(
|
| 12 |
+
nn.Conv2d(6, 16, 3, 1, padding=1),
|
| 13 |
+
nn.BatchNorm2d(16),
|
| 14 |
+
nn.ReLU(),
|
| 15 |
+
nn.Conv2d(16, 16, 3, 1, padding=1),
|
| 16 |
+
nn.BatchNorm2d(16),
|
| 17 |
+
nn.ReLU()
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
self.mp_block_1 = nn.MaxPool2d(2, 2, return_indices=True)
|
| 21 |
+
|
| 22 |
+
self.conv_block_2 = nn.Sequential(
|
| 23 |
+
nn.Conv2d(16, 32, 3, 1, padding=1),
|
| 24 |
+
nn.BatchNorm2d(32),
|
| 25 |
+
nn.ReLU(),
|
| 26 |
+
nn.Conv2d(32, 32, 3, 1, padding=1),
|
| 27 |
+
nn.BatchNorm2d(32),
|
| 28 |
+
nn.ReLU()
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
self.mp_block_2 = nn.MaxPool2d(2, 2, return_indices=True)
|
| 32 |
+
|
| 33 |
+
self.conv_block_3 = nn.Sequential(
|
| 34 |
+
nn.Conv2d(32, 64, 3, 1, padding=1),
|
| 35 |
+
nn.BatchNorm2d(64),
|
| 36 |
+
nn.ReLU(),
|
| 37 |
+
nn.Conv2d(64, 64, 3, 1, padding=1),
|
| 38 |
+
nn.BatchNorm2d(64),
|
| 39 |
+
nn.ReLU()
|
| 40 |
+
)
|
| 41 |
+
|
| 42 |
+
self.mp_block_3 = nn.MaxPool2d(2, 2, return_indices=True)
|
| 43 |
+
|
| 44 |
+
self.conv_block_4 = nn.Sequential(
|
| 45 |
+
nn.Conv2d(64, 128, 3, 1, padding=1),
|
| 46 |
+
nn.BatchNorm2d(128),
|
| 47 |
+
nn.ReLU(),
|
| 48 |
+
nn.Conv2d(128, 128, 3, 1, padding=1),
|
| 49 |
+
nn.BatchNorm2d(128),
|
| 50 |
+
nn.ReLU()
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
self.mp_block_4 = nn.MaxPool2d(2, 2, return_indices=True)
|
| 54 |
+
|
| 55 |
+
#### Mamba
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
self.mamba = MambaCSSM(num_layers=4, d_model=256,d_conv=4, d_state=16)
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
#### Decoder Deconv
|
| 62 |
+
self.mpu_block_4 = nn.MaxUnpool2d(2, 2)
|
| 63 |
+
self.conv_4 = nn.Sequential(
|
| 64 |
+
nn.Conv2d(256, 128, 3, 1, padding=1),
|
| 65 |
+
nn.ReLU()
|
| 66 |
+
)
|
| 67 |
+
self.deconv_4_block = nn.Sequential(
|
| 68 |
+
nn.ConvTranspose2d(128, 64, 3, 1, padding=1),
|
| 69 |
+
nn.ReLU(),
|
| 70 |
+
nn.ConvTranspose2d(64, 64, 3, 1, padding=1),
|
| 71 |
+
nn.ReLU()
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
self.mpu_block_3 = nn.MaxUnpool2d(2, 2)
|
| 75 |
+
|
| 76 |
+
self.conv_3 = nn.Sequential(
|
| 77 |
+
nn.Conv2d(128, 64, 3, 1, padding=1),
|
| 78 |
+
nn.ReLU()
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
self.deconv_3_block = nn.Sequential(
|
| 82 |
+
nn.ConvTranspose2d(64, 32, 3, 1, padding=1),
|
| 83 |
+
nn.ReLU(),
|
| 84 |
+
nn.ConvTranspose2d(32, 32, 3, 1, padding=1),
|
| 85 |
+
nn.ReLU()
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
self.mpu_block_2 = nn.MaxUnpool2d(2, 2)
|
| 89 |
+
|
| 90 |
+
self.conv_2 = nn.Sequential(
|
| 91 |
+
nn.Conv2d(64, 32, 3, 1, padding=1),
|
| 92 |
+
nn.ReLU()
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
self.deconv_2_block = nn.Sequential(
|
| 96 |
+
nn.ConvTranspose2d(32, 16, 3, 1, padding=1),
|
| 97 |
+
nn.ReLU(),
|
| 98 |
+
nn.ConvTranspose2d(16, 16, 3, 1, padding=1),
|
| 99 |
+
nn.ReLU()
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
self.mpu_block_1 = nn.MaxUnpool2d(2, 2)
|
| 103 |
+
|
| 104 |
+
self.conv_1 = nn.Sequential(
|
| 105 |
+
nn.Conv2d(32, 16, 3, 1, padding=1),
|
| 106 |
+
nn.ReLU()
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
self.deconv_1_block = nn.Sequential(
|
| 110 |
+
nn.ConvTranspose2d(16, 8, 3, 1, padding=1),
|
| 111 |
+
nn.ReLU(),
|
| 112 |
+
nn.ConvTranspose2d(8, 6, 3, 1, padding=1),
|
| 113 |
+
nn.ReLU()
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
self.conv_final = nn.Conv2d(6, output_classes, 1, 1)
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
def forward(self, t1,t2):
|
| 120 |
+
|
| 121 |
+
t = torch.cat([t1,t2], dim = 1)
|
| 122 |
+
|
| 123 |
+
x1 = self.conv_block_1(t)
|
| 124 |
+
f1, i1 = self.mp_block_1(x1)
|
| 125 |
+
x2 = self.conv_block_2(f1)
|
| 126 |
+
f2, i2 = self.mp_block_2(x2)
|
| 127 |
+
x3 = self.conv_block_3(f2)
|
| 128 |
+
f3, i3 = self.mp_block_3(x3)
|
| 129 |
+
x4 = self.conv_block_4(f3)
|
| 130 |
+
f4, i4 = self.mp_block_4(x4)
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
b,c,h,w = f4.shape
|
| 135 |
+
f4_t1 = f4[:,:c//2, :,:]
|
| 136 |
+
f4_t2 = f4[:,c//2:, :,:]
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
# print(f4_t1.shape)
|
| 141 |
+
f4_t1 = f4_t1.view((-1, 64, 16*16)) # Adjusted for input size 256x256
|
| 142 |
+
f4_t2 = f4_t2.view((-1, 64, 16*16)) # Adjusted for input size 256x256
|
| 143 |
+
f5_t1,f5_t2 = self.mamba(f4_t1, f4_t2)
|
| 144 |
+
f5_t1 = f5_t1.view((-1, 64, 16, 16)) # Adjust the shape for further operations
|
| 145 |
+
f5_t2 = f5_t2.view((-1, 64, 16, 16)) # Adjust the shape for further operations
|
| 146 |
+
|
| 147 |
+
f5 = torch.cat([f5_t1, f5_t2], dim = 1)
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
f6 = self.mpu_block_4(f5, i4)
|
| 151 |
+
f7 = self.conv_4(torch.cat((x4, f6), dim=1))
|
| 152 |
+
f8 = self.deconv_4_block(f7)
|
| 153 |
+
|
| 154 |
+
f9 = self.mpu_block_3(f8, i3, output_size=x3.size())
|
| 155 |
+
f10 = self.conv_3(torch.cat((f9, x3), dim=1))
|
| 156 |
+
f11 = self.deconv_3_block(f10)
|
| 157 |
+
|
| 158 |
+
f12 = self.mpu_block_2(f11, i2)
|
| 159 |
+
f13 = self.conv_2(torch.cat((f12, x2), dim=1))
|
| 160 |
+
|
| 161 |
+
f14 = self.deconv_2_block(f13)
|
| 162 |
+
|
| 163 |
+
f15 = self.mpu_block_1(f14, i1)
|
| 164 |
+
f16 = self.conv_1(torch.cat((f15, x1), dim=1))
|
| 165 |
+
f17 = self.deconv_1_block(f16)
|
| 166 |
+
f18 = self.conv_final(f17)
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
return f18
|
method/__pycache__/Mamba.cpython-313.pyc
ADDED
|
Binary file (17.3 kB). View file
|
|
|
method/__pycache__/MambaCSSM.cpython-313.pyc
ADDED
|
Binary file (17.3 kB). View file
|
|
|
method/__pycache__/Model.cpython-313.pyc
ADDED
|
Binary file (8.15 kB). View file
|
|
|
pre_trained_weights/LEVIR+/levir_cd_+_cssm.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:faac6be557638ff677a1f9d83b6b3c0e02c6f198e84c82b54f109f46722b341c
|
| 3 |
+
size 17446716
|
pre_trained_weights/LEVIR+/levir_layer_1.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b30cefff0e7c839d8e3ac056e11b480044094400a6395aa770fd8eba957ab87f
|
| 3 |
+
size 6183447
|
pre_trained_weights/LEVIR+/levir_layer_2.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fbd45dcedf149ee139065f585bdc76ed67c1bdc5e4134fd86bd5b5fcf6d9bb93
|
| 3 |
+
size 8999194
|
pre_trained_weights/LEVIR+/levir_layer_3.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c8815b516932a36eb24bf41db20272d3439cf275c33bf2c265dc2892b224e43b
|
| 3 |
+
size 11814942
|
pre_trained_weights/LEVIR+/levir_layer_4.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:747f89b70c81fe1bb4b7b54b30a1ba86b5263f7d35e2bb720fe00068a561bfbc
|
| 3 |
+
size 14630690
|
pre_trained_weights/LEVIR+/levir_layer_6.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4e12c2629f1797cdb6b59268a4c851956660139fac0a8da1ec406cdf69f2c8ec
|
| 3 |
+
size 20262122
|
pre_trained_weights/SYSU-CD/sysu.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dcba1ce2bf614a0e357af4d973322f4714ac9890fcbc3a08a22eac8e4519342f
|
| 3 |
+
size 17434915
|
pre_trained_weights/SYSU-CD/sysu_1.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7c6d03d55f3e770dd988585d2e4adad8c30008708836e176fac566adc4c1d442
|
| 3 |
+
size 17439289
|
pre_trained_weights/SYSU-CD/sysu_layer_1.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:896d763f09a5aec231565bfc21c2b464beb48496404001f4c96964bbd51e37e2
|
| 3 |
+
size 6183344
|
pre_trained_weights/SYSU-CD/sysu_layer_2.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ecde174350c588e9cfc079e6d332d09f6bc28ab677645389034fae8f1098a878
|
| 3 |
+
size 8999074
|
pre_trained_weights/SYSU-CD/sysu_layer_3.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f040144f83e4aeaf8635b9a84736d1a3a1d815b8c1bb6452b99f1dfe8e40723c
|
| 3 |
+
size 11814805
|
pre_trained_weights/SYSU-CD/sysu_layer_4.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4ecca67ce52f965d60c38eb7c405c35eaf69d4b9ec05503f567135011f82bd35
|
| 3 |
+
size 14630536
|
pre_trained_weights/SYSU-CD/sysu_layer_5.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4e631dec5c109e5b6ffefe898604fbe6fd1cfa35f738a0d3f5c2ee61ff963db9
|
| 3 |
+
size 20261934
|
pre_trained_weights/SYSU-CD/sysu_layer_6.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:82a652e3b42a83ae2b5a3614afbdf26cab9f582c8a5734a274992ea6035232ff
|
| 3 |
+
size 20261934
|
pre_trained_weights/WHU-CD/whu.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7c778f52d783c306397a4643ba1b2037ea166c0d39f84bae6de3008a3eb74c96
|
| 3 |
+
size 17434744
|
pre_trained_weights/WHU-CD/whu_1.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5d56db7dcee57e0b01adbe84b4de54e2ca5a5810c7937b4534cf117558a340b6
|
| 3 |
+
size 17435086
|
pre_trained_weights/WHU-CD/whu_layer_1.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b05e358ddac70c2faf410a8fd1cf62756eceaf35909645d24124e9063824b075
|
| 3 |
+
size 6183241
|
pre_trained_weights/WHU-CD/whu_layer_2.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5b31b24f29784692d63f798ab1d878ac7fb3e327e789fd59a4c0ac8bfd16f829
|
| 3 |
+
size 8998954
|
pre_trained_weights/WHU-CD/whu_layer_3.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:939034d4c1b74891fbc454d32e0f744d1244f73451598f923fd5dc77c2ba5a1a
|
| 3 |
+
size 11814668
|
pre_trained_weights/WHU-CD/whu_layer_4.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:25f2deaeeba1e5643519466f13b722b5d7bff0a510a5dd5f28184153719b0eea
|
| 3 |
+
size 14630382
|
pre_trained_weights/WHU-CD/whu_layer_5.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5c161ddd7735e2d80adda186ab2e9854f80b02c77f4e4fe1fe788bc90d32631c
|
| 3 |
+
size 17446032
|
pre_trained_weights/WHU-CD/whu_layer_6.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7a94d143f3ccafc97934c89285febbfde8ea6106ba65c6f55295ede407ba36df
|
| 3 |
+
size 20261746
|
utils/__pycache__/__init__.cpython-313.pyc
ADDED
|
Binary file (151 Bytes). View file
|
|
|
utils/__pycache__/imgutils.cpython-313.pyc
ADDED
|
Binary file (4.81 kB). View file
|
|
|
utils/__pycache__/make_data.cpython-313.pyc
ADDED
|
Binary file (7.37 kB). View file
|
|
|
utils/__pycache__/metric.cpython-313.pyc
ADDED
|
Binary file (7.36 kB). View file
|
|
|
utils/__pycache__/utils_loss.cpython-313.pyc
ADDED
|
Binary file (11.7 kB). View file
|
|
|
utils/loss/L.py
ADDED
|
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import print_function, division
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
from torch.autograd import Variable
|
| 5 |
+
import torch.nn.functional as F
|
| 6 |
+
import numpy as np
|
| 7 |
+
try:
|
| 8 |
+
from itertools import ifilterfalse
|
| 9 |
+
except ImportError: # py3k
|
| 10 |
+
from itertools import filterfalse as ifilterfalse
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def lovasz_grad(gt_sorted):
|
| 14 |
+
"""
|
| 15 |
+
Computes gradient of the Lovasz extension w.r.t sorted errors
|
| 16 |
+
See Alg. 1 in paper
|
| 17 |
+
"""
|
| 18 |
+
p = len(gt_sorted)
|
| 19 |
+
gts = gt_sorted.sum()
|
| 20 |
+
intersection = gts - gt_sorted.float().cumsum(0)
|
| 21 |
+
union = gts + (1 - gt_sorted).float().cumsum(0)
|
| 22 |
+
jaccard = 1. - intersection / union
|
| 23 |
+
if p > 1: # cover 1-pixel case
|
| 24 |
+
jaccard[1:p] = jaccard[1:p] - jaccard[0:-1]
|
| 25 |
+
return jaccard
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def iou_binary(preds, labels, EMPTY=1., ignore=None, per_image=True):
|
| 29 |
+
"""
|
| 30 |
+
IoU for foreground class
|
| 31 |
+
binary: 1 foreground, 0 background
|
| 32 |
+
"""
|
| 33 |
+
if not per_image:
|
| 34 |
+
preds, labels = (preds,), (labels,)
|
| 35 |
+
ious = []
|
| 36 |
+
for pred, label in zip(preds, labels):
|
| 37 |
+
intersection = ((label == 1) & (pred == 1)).sum()
|
| 38 |
+
union = ((label == 1) | ((pred == 1) & (label != ignore))).sum()
|
| 39 |
+
if not union:
|
| 40 |
+
iou = EMPTY
|
| 41 |
+
else:
|
| 42 |
+
iou = float(intersection) / float(union)
|
| 43 |
+
ious.append(iou)
|
| 44 |
+
iou = mean(ious) # mean accross images if per_image
|
| 45 |
+
return 100 * iou
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def iou(preds, labels, C, EMPTY=1., ignore=None, per_image=False):
|
| 49 |
+
"""
|
| 50 |
+
Array of IoU for each (non ignored) class
|
| 51 |
+
"""
|
| 52 |
+
if not per_image:
|
| 53 |
+
preds, labels = (preds,), (labels,)
|
| 54 |
+
ious = []
|
| 55 |
+
for pred, label in zip(preds, labels):
|
| 56 |
+
iou = []
|
| 57 |
+
for i in range(C):
|
| 58 |
+
if i != ignore: # The ignored label is sometimes among predicted classes (ENet - CityScapes)
|
| 59 |
+
intersection = ((label == i) & (pred == i)).sum()
|
| 60 |
+
union = ((label == i) | ((pred == i) & (label != ignore))).sum()
|
| 61 |
+
if not union:
|
| 62 |
+
iou.append(EMPTY)
|
| 63 |
+
else:
|
| 64 |
+
iou.append(float(intersection) / float(union))
|
| 65 |
+
ious.append(iou)
|
| 66 |
+
ious = [mean(iou) for iou in zip(*ious)] # mean accross images if per_image
|
| 67 |
+
return 100 * np.array(ious)
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
# --------------------------- BINARY LOSSES ---------------------------
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def lovasz_hinge(logits, labels, per_image=True, ignore=None):
|
| 74 |
+
"""
|
| 75 |
+
Binary Lovasz hinge loss
|
| 76 |
+
logits: [B, H, W] Variable, logits at each pixel (between -\infty and +\infty)
|
| 77 |
+
labels: [B, H, W] Tensor, binary ground truth masks (0 or 1)
|
| 78 |
+
per_image: compute the loss per image instead of per batch
|
| 79 |
+
ignore: void class id
|
| 80 |
+
"""
|
| 81 |
+
if per_image:
|
| 82 |
+
loss = mean(lovasz_hinge_flat(*flatten_binary_scores(log.unsqueeze(0), lab.unsqueeze(0), ignore))
|
| 83 |
+
for log, lab in zip(logits, labels))
|
| 84 |
+
else:
|
| 85 |
+
loss = lovasz_hinge_flat(*flatten_binary_scores(logits, labels, ignore))
|
| 86 |
+
return loss
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
def lovasz_hinge_flat(logits, labels):
|
| 90 |
+
"""
|
| 91 |
+
Binary Lovasz hinge loss
|
| 92 |
+
logits: [P] Variable, logits at each prediction (between -\infty and +\infty)
|
| 93 |
+
labels: [P] Tensor, binary ground truth labels (0 or 1)
|
| 94 |
+
ignore: label to ignore
|
| 95 |
+
"""
|
| 96 |
+
if len(labels) == 0:
|
| 97 |
+
# only void pixels, the gradients should be 0
|
| 98 |
+
return logits.sum() * 0.
|
| 99 |
+
signs = 2. * labels.float() - 1.
|
| 100 |
+
errors = (1. - logits * Variable(signs))
|
| 101 |
+
errors_sorted, perm = torch.sort(errors, dim=0, descending=True)
|
| 102 |
+
perm = perm.data
|
| 103 |
+
gt_sorted = labels[perm]
|
| 104 |
+
grad = lovasz_grad(gt_sorted)
|
| 105 |
+
loss = torch.dot(F.relu(errors_sorted), Variable(grad))
|
| 106 |
+
return loss
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
def flatten_binary_scores(scores, labels, ignore=None):
|
| 110 |
+
"""
|
| 111 |
+
Flattens predictions in the batch (binary case)
|
| 112 |
+
Remove labels equal to 'ignore'
|
| 113 |
+
"""
|
| 114 |
+
scores = scores.view(-1)
|
| 115 |
+
labels = labels.view(-1)
|
| 116 |
+
if ignore is None:
|
| 117 |
+
return scores, labels
|
| 118 |
+
valid = (labels != ignore)
|
| 119 |
+
vscores = scores[valid]
|
| 120 |
+
vlabels = labels[valid]
|
| 121 |
+
return vscores, vlabels
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
class StableBCELoss(torch.nn.modules.Module):
|
| 125 |
+
def __init__(self):
|
| 126 |
+
super(StableBCELoss, self).__init__()
|
| 127 |
+
def forward(self, input, target):
|
| 128 |
+
neg_abs = - input.abs()
|
| 129 |
+
loss = input.clamp(min=0) - input * target + (1 + neg_abs.exp()).log()
|
| 130 |
+
return loss.mean()
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
def binary_xloss(logits, labels, ignore=None):
|
| 134 |
+
"""
|
| 135 |
+
Binary Cross entropy loss
|
| 136 |
+
logits: [B, H, W] Variable, logits at each pixel (between -\infty and +\infty)
|
| 137 |
+
labels: [B, H, W] Tensor, binary ground truth masks (0 or 1)
|
| 138 |
+
ignore: void class id
|
| 139 |
+
"""
|
| 140 |
+
logits, labels = flatten_binary_scores(logits, labels, ignore)
|
| 141 |
+
loss = StableBCELoss()(logits, Variable(labels.float()))
|
| 142 |
+
return loss
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
# --------------------------- MULTICLASS LOSSES ---------------------------
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
def lovasz_softmax(probas, labels, classes='present', per_image=False, ignore=None):
|
| 149 |
+
"""
|
| 150 |
+
Multi-class Lovasz-Softmax loss
|
| 151 |
+
probas: [B, C, H, W] Variable, class probabilities at each prediction (between 0 and 1).
|
| 152 |
+
Interpreted as binary (sigmoid) output with outputs of size [B, H, W].
|
| 153 |
+
labels: [B, H, W] Tensor, ground truth labels (between 0 and C - 1)
|
| 154 |
+
classes: 'all' for all, 'present' for classes present in labels, or a list of classes to average.
|
| 155 |
+
per_image: compute the loss per image instead of per batch
|
| 156 |
+
ignore: void class labels
|
| 157 |
+
"""
|
| 158 |
+
if per_image:
|
| 159 |
+
loss = mean(lovasz_softmax_flat(*flatten_probas(prob.unsqueeze(0), lab.unsqueeze(0), ignore), classes=classes)
|
| 160 |
+
for prob, lab in zip(probas, labels))
|
| 161 |
+
else:
|
| 162 |
+
loss = lovasz_softmax_flat(*flatten_probas(probas, labels, ignore), classes=classes)
|
| 163 |
+
return loss
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
def lovasz_softmax_flat(probas, labels, classes='present'):
|
| 167 |
+
"""
|
| 168 |
+
Multi-class Lovasz-Softmax loss
|
| 169 |
+
probas: [P, C] Variable, class probabilities at each prediction (between 0 and 1)
|
| 170 |
+
labels: [P] Tensor, ground truth labels (between 0 and C - 1)
|
| 171 |
+
classes: 'all' for all, 'present' for classes present in labels, or a list of classes to average.
|
| 172 |
+
"""
|
| 173 |
+
if probas.numel() == 0:
|
| 174 |
+
# only void pixels, the gradients should be 0
|
| 175 |
+
return probas * 0.
|
| 176 |
+
C = probas.size(1)
|
| 177 |
+
losses = []
|
| 178 |
+
class_to_sum = list(range(C)) if classes in ['all', 'present'] else classes
|
| 179 |
+
for c in class_to_sum:
|
| 180 |
+
fg = (labels == c).float() # foreground for class c
|
| 181 |
+
if (classes is 'present' and fg.sum() == 0):
|
| 182 |
+
continue
|
| 183 |
+
if C == 1:
|
| 184 |
+
if len(classes) > 1:
|
| 185 |
+
raise ValueError('Sigmoid output possible only with 1 class')
|
| 186 |
+
class_pred = probas[:, 0]
|
| 187 |
+
else:
|
| 188 |
+
class_pred = probas[:, c]
|
| 189 |
+
errors = (Variable(fg) - class_pred).abs()
|
| 190 |
+
errors_sorted, perm = torch.sort(errors, 0, descending=True)
|
| 191 |
+
perm = perm.data
|
| 192 |
+
fg_sorted = fg[perm]
|
| 193 |
+
losses.append(torch.dot(errors_sorted, Variable(lovasz_grad(fg_sorted))))
|
| 194 |
+
return mean(losses)
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
def flatten_probas(probas, labels, ignore=None):
|
| 198 |
+
"""
|
| 199 |
+
Flattens predictions in the batch
|
| 200 |
+
"""
|
| 201 |
+
if probas.dim() == 3:
|
| 202 |
+
# assumes output of a sigmoid layer
|
| 203 |
+
B, H, W = probas.size()
|
| 204 |
+
probas = probas.view(B, 1, H, W)
|
| 205 |
+
B, C, H, W = probas.size()
|
| 206 |
+
probas = probas.permute(0, 2, 3, 1).contiguous().view(-1, C) # B * H * W, C = P, C
|
| 207 |
+
labels = labels.view(-1)
|
| 208 |
+
if ignore is None:
|
| 209 |
+
return probas, labels
|
| 210 |
+
valid = (labels != ignore)
|
| 211 |
+
vprobas = probas[valid.nonzero().squeeze()]
|
| 212 |
+
vlabels = labels[valid]
|
| 213 |
+
return vprobas, vlabels
|
| 214 |
+
|
| 215 |
+
def xloss(logits, labels, ignore=None):
|
| 216 |
+
"""
|
| 217 |
+
Cross entropy loss
|
| 218 |
+
"""
|
| 219 |
+
return F.cross_entropy(logits, Variable(labels), ignore_index=255)
|
| 220 |
+
|
| 221 |
+
|
| 222 |
+
# --------------------------- HELPER FUNCTIONS ---------------------------
|
| 223 |
+
def isnan(x):
|
| 224 |
+
return x != x
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
def mean(l, ignore_nan=False, empty=0):
|
| 228 |
+
"""
|
| 229 |
+
nanmean compatible with generators.
|
| 230 |
+
"""
|
| 231 |
+
l = iter(l)
|
| 232 |
+
if ignore_nan:
|
| 233 |
+
l = ifilterfalse(isnan, l)
|
| 234 |
+
try:
|
| 235 |
+
n = 1
|
| 236 |
+
acc = next(l)
|
| 237 |
+
except StopIteration:
|
| 238 |
+
if empty == 'raise':
|
| 239 |
+
raise ValueError('Empty mean')
|
| 240 |
+
return empty
|
| 241 |
+
for n, v in enumerate(l, 2):
|
| 242 |
+
acc += v
|
| 243 |
+
if n == 1:
|
| 244 |
+
return acc
|
| 245 |
+
return acc / n
|
utils/loss/__pycache__/L.cpython-313.pyc
ADDED
|
Binary file (11.5 kB). View file
|
|
|
utils/metrics/__pycache__/ev.cpython-313.pyc
ADDED
|
Binary file (7.36 kB). View file
|
|
|
utils/metrics/ev.py
ADDED
|
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
class Evaluator(object):
|
| 5 |
+
def __init__(self, num_class):
|
| 6 |
+
self.num_class = num_class
|
| 7 |
+
self.confusion_matrix = np.zeros((self.num_class,) * 2, dtype=np.longlong)
|
| 8 |
+
self._epsilon = 1e-7
|
| 9 |
+
|
| 10 |
+
def Pixel_Accuracy(self):
|
| 11 |
+
Acc = np.diag(self.confusion_matrix).sum() / self.confusion_matrix.sum()
|
| 12 |
+
return Acc
|
| 13 |
+
|
| 14 |
+
def Pixel_Accuracy_Class(self):
|
| 15 |
+
Acc = np.diag(self.confusion_matrix) / (self.confusion_matrix.sum(axis=1) + self._epsilon)
|
| 16 |
+
mAcc = np.nanmean(Acc)
|
| 17 |
+
return mAcc, Acc
|
| 18 |
+
|
| 19 |
+
def Pixel_Precision_Rate(self):
|
| 20 |
+
assert self.confusion_matrix.shape[0] == 2
|
| 21 |
+
Pre = self.confusion_matrix[1, 1] / (self.confusion_matrix[0, 1] + self.confusion_matrix[1, 1] + self._epsilon)
|
| 22 |
+
return Pre
|
| 23 |
+
|
| 24 |
+
def Pixel_Recall_Rate(self):
|
| 25 |
+
assert self.confusion_matrix.shape[0] == 2
|
| 26 |
+
Rec = self.confusion_matrix[1, 1] / (self.confusion_matrix[1, 0] + self.confusion_matrix[1, 1] + self._epsilon)
|
| 27 |
+
return Rec
|
| 28 |
+
|
| 29 |
+
def Pixel_F1_score(self):
|
| 30 |
+
assert self.confusion_matrix.shape[0] == 2
|
| 31 |
+
Rec = self.Pixel_Recall_Rate()
|
| 32 |
+
Pre = self.Pixel_Precision_Rate()
|
| 33 |
+
F1 = 2 * Rec * Pre / (Rec + Pre)
|
| 34 |
+
return F1
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def calculate_per_class_metrics(self):
|
| 38 |
+
# Adjustments to exclude class 0 in calculations
|
| 39 |
+
TPs = np.diag(self.confusion_matrix)[1:] # Start from index 1 to exclude class 0
|
| 40 |
+
FNs = np.sum(self.confusion_matrix, axis=1)[1:] - TPs
|
| 41 |
+
FPs = np.sum(self.confusion_matrix, axis=0)[1:] - TPs
|
| 42 |
+
return TPs, FNs, FPs
|
| 43 |
+
|
| 44 |
+
def Damage_F1_socore(self):
|
| 45 |
+
TPs, FNs, FPs = self.calculate_per_class_metrics()
|
| 46 |
+
precisions = TPs / (TPs + FPs + 1e-7)
|
| 47 |
+
recalls = TPs / (TPs + FNs + 1e-7)
|
| 48 |
+
f1_scores = 2 * (precisions * recalls) / (precisions + recalls + 1e-7)
|
| 49 |
+
return f1_scores
|
| 50 |
+
|
| 51 |
+
def Mean_Intersection_over_Union(self):
|
| 52 |
+
MIoU = np.nanmean(self.Intersection_over_Union())
|
| 53 |
+
return MIoU
|
| 54 |
+
|
| 55 |
+
def Intersection_over_Union(self):
|
| 56 |
+
IoU = np.diag(self.confusion_matrix) / (
|
| 57 |
+
np.sum(self.confusion_matrix, axis=1) + np.sum(self.confusion_matrix, axis=0) -
|
| 58 |
+
np.diag(self.confusion_matrix) + 1e-7)
|
| 59 |
+
return IoU
|
| 60 |
+
|
| 61 |
+
def Kappa_coefficient(self):
|
| 62 |
+
# Number of observations (total number of classifications)
|
| 63 |
+
# num_total = np.array(0, dtype=np.long)
|
| 64 |
+
# row_sums = np.array([0, 0], dtype=np.long)
|
| 65 |
+
# col_sums = np.array([0, 0], dtype=np.long)
|
| 66 |
+
# total += np.sum(self.confusion_matrix)
|
| 67 |
+
# # Observed agreement (i.e., sum of diagonal elements)
|
| 68 |
+
# observed_agreement = np.sum(np.diag(self.confusion_matrix))
|
| 69 |
+
# # Compute expected agreement
|
| 70 |
+
# row_sums += np.sum(self.confusion_matrix, axis=0)
|
| 71 |
+
# col_sums += np.sum(self.confusion_matrix, axis=1)
|
| 72 |
+
# expected_agreement = np.sum((row_sums * col_sums) / total)
|
| 73 |
+
num_total = np.sum(self.confusion_matrix)
|
| 74 |
+
observed_accuracy = np.trace(self.confusion_matrix) / num_total
|
| 75 |
+
expected_accuracy = np.sum(
|
| 76 |
+
np.sum(self.confusion_matrix, axis=0) / num_total * np.sum(self.confusion_matrix, axis=1) / num_total)
|
| 77 |
+
|
| 78 |
+
# Calculate Cohen's kappa
|
| 79 |
+
kappa = (observed_accuracy - expected_accuracy) / (1 - expected_accuracy)
|
| 80 |
+
return kappa
|
| 81 |
+
|
| 82 |
+
def Frequency_Weighted_Intersection_over_Union(self):
|
| 83 |
+
freq = np.sum(self.confusion_matrix, axis=1) / np.sum(self.confusion_matrix)
|
| 84 |
+
iu = np.diag(self.confusion_matrix) / (
|
| 85 |
+
np.sum(self.confusion_matrix, axis=1) + np.sum(self.confusion_matrix, axis=0) -
|
| 86 |
+
np.diag(self.confusion_matrix))
|
| 87 |
+
|
| 88 |
+
FWIoU = (freq[freq > 0] * iu[freq > 0]).sum()
|
| 89 |
+
return FWIoU
|
| 90 |
+
|
| 91 |
+
def _generate_matrix(self, gt_image, pre_image):
|
| 92 |
+
mask = (gt_image >= 0) & (gt_image < self.num_class)
|
| 93 |
+
label = self.num_class * gt_image[mask].astype('int64') + pre_image[mask]
|
| 94 |
+
count = np.bincount(label, minlength=self.num_class ** 2)
|
| 95 |
+
confusion_matrix = count.reshape(self.num_class, self.num_class)
|
| 96 |
+
return confusion_matrix
|
| 97 |
+
|
| 98 |
+
def add_batch(self, gt_image, pre_image):
|
| 99 |
+
assert gt_image.shape == pre_image.shape
|
| 100 |
+
self.confusion_matrix += self._generate_matrix(gt_image, pre_image)
|
| 101 |
+
|
| 102 |
+
def reset(self):
|
| 103 |
+
self.confusion_matrix = np.zeros((self.num_class,) * 2)
|