Upload sharegpt_polar.py with huggingface_hub
Browse files- sharegpt_polar.py +462 -0
sharegpt_polar.py
ADDED
|
@@ -0,0 +1,462 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
import logging
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
from typing import Any, Iterable
|
| 6 |
+
|
| 7 |
+
from datasets import Dataset, load_dataset
|
| 8 |
+
import httpx
|
| 9 |
+
|
| 10 |
+
import verifiers as vf
|
| 11 |
+
from verifiers.types import Messages, State
|
| 12 |
+
|
| 13 |
+
DEFAULT_MODEL = "internlm/POLAR-7B"
|
| 14 |
+
POOL_ENDPOINT = "/pooling"
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def _ensure_messages(conversations: Iterable[dict[str, Any]]) -> list[dict[str, Any]]:
|
| 18 |
+
messages: list[dict[str, Any]] = []
|
| 19 |
+
for turn in conversations:
|
| 20 |
+
role = turn.get("from") or turn.get("role")
|
| 21 |
+
content = turn.get("value") or turn.get("content")
|
| 22 |
+
if role == "system":
|
| 23 |
+
messages.append({"role": "system", "content": content})
|
| 24 |
+
elif role == "human" or role == "user":
|
| 25 |
+
messages.append({"role": "user", "content": content})
|
| 26 |
+
elif role in {"gpt", "assistant"}:
|
| 27 |
+
messages.append({"role": "assistant", "content": content})
|
| 28 |
+
return messages
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def _has_assistant(conversations: Iterable[dict[str, Any]]) -> bool:
|
| 32 |
+
return any(
|
| 33 |
+
(turn.get("from") or turn.get("role")) in {"gpt", "assistant"}
|
| 34 |
+
for turn in conversations
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def _partition_conversation(
|
| 39 |
+
messages: list[dict[str, Any]]
|
| 40 |
+
) -> tuple[list[dict[str, Any]], list[dict[str, Any]], list[list[dict[str, Any]]], list[str]]:
|
| 41 |
+
assistant_indices = [idx for idx, msg in enumerate(messages) if msg["role"] == "assistant"]
|
| 42 |
+
if not assistant_indices:
|
| 43 |
+
raise ValueError("Conversation must include at least one assistant response")
|
| 44 |
+
|
| 45 |
+
first_assistant_idx = assistant_indices[0]
|
| 46 |
+
prompt_messages = messages[:first_assistant_idx]
|
| 47 |
+
if not any(msg["role"] == "user" for msg in prompt_messages):
|
| 48 |
+
raise ValueError("Conversation must include a user message before the first assistant turn")
|
| 49 |
+
|
| 50 |
+
reference_messages = [messages[idx] for idx in assistant_indices]
|
| 51 |
+
|
| 52 |
+
future_turns: list[list[dict[str, Any]]] = []
|
| 53 |
+
user_contexts: list[str] = []
|
| 54 |
+
assistant_indices_with_end = assistant_indices + [len(messages)]
|
| 55 |
+
for current_idx, next_idx in zip(assistant_indices, assistant_indices_with_end[1:]):
|
| 56 |
+
env_msgs: list[dict[str, Any]] = []
|
| 57 |
+
user_context_lines: list[str] = []
|
| 58 |
+
for i in range(current_idx + 1, next_idx):
|
| 59 |
+
turn = messages[i]
|
| 60 |
+
role = turn["role"]
|
| 61 |
+
content = turn["content"]
|
| 62 |
+
if role == "system":
|
| 63 |
+
continue
|
| 64 |
+
if role == "user":
|
| 65 |
+
line = (content or "").strip()
|
| 66 |
+
if line:
|
| 67 |
+
user_context_lines.append(line)
|
| 68 |
+
env_msgs.append({"role": "user", "content": line})
|
| 69 |
+
else:
|
| 70 |
+
env_msgs.append(turn)
|
| 71 |
+
future_turns.append(env_msgs)
|
| 72 |
+
user_contexts.append("\n".join(user_context_lines).strip())
|
| 73 |
+
|
| 74 |
+
return prompt_messages, reference_messages, future_turns, user_contexts
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def _extract_last_value(value: Any) -> float | None:
|
| 78 |
+
current: Any = value
|
| 79 |
+
while isinstance(current, list) and current:
|
| 80 |
+
current = current[-1]
|
| 81 |
+
if isinstance(current, (int, float)):
|
| 82 |
+
return float(current)
|
| 83 |
+
return None
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
class PoolingClient:
|
| 87 |
+
def __init__(
|
| 88 |
+
self,
|
| 89 |
+
base_url: str,
|
| 90 |
+
model: str = DEFAULT_MODEL,
|
| 91 |
+
timeout: float = 30.0,
|
| 92 |
+
logger: logging.Logger | None = None,
|
| 93 |
+
enable_logging: bool = False,
|
| 94 |
+
):
|
| 95 |
+
self.base_url = base_url.rstrip("/")
|
| 96 |
+
if not self.base_url.startswith("http"):
|
| 97 |
+
self.base_url = f"https://{self.base_url}"
|
| 98 |
+
self.timeout = timeout
|
| 99 |
+
self.model = model
|
| 100 |
+
self.logger = logger or logging.getLogger("sharegpt_polar.PoolingClient")
|
| 101 |
+
self.enable_logging = enable_logging
|
| 102 |
+
|
| 103 |
+
@staticmethod
|
| 104 |
+
def encode(sample: dict[str, Any]) -> str:
|
| 105 |
+
def _messages_to_text(messages: list[dict[str, Any]] | None) -> str:
|
| 106 |
+
if not messages:
|
| 107 |
+
return ""
|
| 108 |
+
return "\n".join(msg.get("content", "") for msg in messages if msg.get("content"))
|
| 109 |
+
|
| 110 |
+
prompt_text = _messages_to_text(sample.get("prompt"))
|
| 111 |
+
reference_text = _messages_to_text(sample.get("reference"))
|
| 112 |
+
output_text = _messages_to_text(sample.get("output"))
|
| 113 |
+
|
| 114 |
+
reference_cat = f"{prompt_text}\n{reference_text}" if reference_text else prompt_text
|
| 115 |
+
output_cat = f"{prompt_text}\n{output_text}" if output_text else prompt_text
|
| 116 |
+
|
| 117 |
+
return f"{reference_cat}<|reward|>{output_cat}[UNUSED_TOKEN_130]"
|
| 118 |
+
|
| 119 |
+
async def score(self, payload: list[dict[str, Any]]) -> dict[str, Any] | list[Any]:
|
| 120 |
+
encoded_payload = [self.encode(item) for item in payload]
|
| 121 |
+
if self.enable_logging:
|
| 122 |
+
self.logger.debug(
|
| 123 |
+
"Sending reward request",
|
| 124 |
+
extra={
|
| 125 |
+
"payload_size": len(payload),
|
| 126 |
+
"model": self.model,
|
| 127 |
+
"endpoint": self.base_url,
|
| 128 |
+
},
|
| 129 |
+
)
|
| 130 |
+
async with httpx.AsyncClient(timeout=self.timeout) as client:
|
| 131 |
+
response = await client.post(
|
| 132 |
+
f"{self.base_url}{POOL_ENDPOINT}",
|
| 133 |
+
json={"model": self.model, "input": encoded_payload},
|
| 134 |
+
headers={"Content-Type": "application/json"},
|
| 135 |
+
)
|
| 136 |
+
try:
|
| 137 |
+
response.raise_for_status()
|
| 138 |
+
except httpx.HTTPStatusError as exc:
|
| 139 |
+
if self.enable_logging:
|
| 140 |
+
self.logger.error(
|
| 141 |
+
"Reward server request failed",
|
| 142 |
+
extra={
|
| 143 |
+
"status": exc.response.status_code,
|
| 144 |
+
"body": exc.response.text,
|
| 145 |
+
},
|
| 146 |
+
)
|
| 147 |
+
raise RuntimeError(
|
| 148 |
+
f"Pooling request failed: {exc.response.status_code} {exc.response.text}"
|
| 149 |
+
) from exc
|
| 150 |
+
if self.enable_logging:
|
| 151 |
+
self.logger.debug(
|
| 152 |
+
"Received reward response",
|
| 153 |
+
extra={
|
| 154 |
+
"status": response.status_code,
|
| 155 |
+
"model": self.model,
|
| 156 |
+
},
|
| 157 |
+
)
|
| 158 |
+
return response.json()
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
async def polar_reward(
|
| 162 |
+
prompt: Messages,
|
| 163 |
+
completion: Messages,
|
| 164 |
+
info: dict[str, Any],
|
| 165 |
+
reward_client: PoolingClient,
|
| 166 |
+
logger: logging.Logger | None = None,
|
| 167 |
+
enable_logging: bool = False,
|
| 168 |
+
**_: Any,
|
| 169 |
+
) -> float:
|
| 170 |
+
assistant_turns = [msg for msg in completion if msg.get("role") == "assistant"]
|
| 171 |
+
if not assistant_turns:
|
| 172 |
+
if enable_logging:
|
| 173 |
+
(logger or logging.getLogger("sharegpt_polar.reward")).debug(
|
| 174 |
+
"No assistant turn available for reward",
|
| 175 |
+
extra={"prompt": prompt, "completion": completion},
|
| 176 |
+
)
|
| 177 |
+
return 0.0
|
| 178 |
+
|
| 179 |
+
payload = [
|
| 180 |
+
{
|
| 181 |
+
"prompt": prompt,
|
| 182 |
+
"reference": info.get("reference", []),
|
| 183 |
+
"output": [assistant_turns[-1]],
|
| 184 |
+
}
|
| 185 |
+
]
|
| 186 |
+
try:
|
| 187 |
+
data = await reward_client.score(payload)
|
| 188 |
+
except RuntimeError as err:
|
| 189 |
+
if enable_logging:
|
| 190 |
+
(logger or logging.getLogger("sharegpt_polar.reward")).exception(
|
| 191 |
+
"Reward request failed", extra={"error": str(err), "payload": payload}
|
| 192 |
+
)
|
| 193 |
+
raise
|
| 194 |
+
if enable_logging:
|
| 195 |
+
(logger or logging.getLogger("sharegpt_polar.reward")).debug(
|
| 196 |
+
"Reward response received", extra={"response": data}
|
| 197 |
+
)
|
| 198 |
+
if isinstance(data, dict):
|
| 199 |
+
if "data" in data:
|
| 200 |
+
scores = data["data"][0]["data"]
|
| 201 |
+
last_value = _extract_last_value(scores)
|
| 202 |
+
if last_value is not None:
|
| 203 |
+
return last_value
|
| 204 |
+
if "rewards" in data and data["rewards"]:
|
| 205 |
+
last_value = _extract_last_value(data["rewards"])
|
| 206 |
+
if last_value is not None:
|
| 207 |
+
return last_value
|
| 208 |
+
if isinstance(data, list) and data:
|
| 209 |
+
last_value = _extract_last_value(data)
|
| 210 |
+
if last_value is not None:
|
| 211 |
+
return last_value
|
| 212 |
+
if enable_logging:
|
| 213 |
+
(logger or logging.getLogger("sharegpt_polar.reward")).error(
|
| 214 |
+
"Unexpected reward payload", extra={"response": data}
|
| 215 |
+
)
|
| 216 |
+
raise RuntimeError(f"Unexpected reward response: {data}")
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
class ShareGPTPolarEnv(vf.MultiTurnEnv):
|
| 220 |
+
def __init__(
|
| 221 |
+
self,
|
| 222 |
+
dataset: Dataset,
|
| 223 |
+
rubric: vf.Rubric,
|
| 224 |
+
*,
|
| 225 |
+
enable_logging: bool = False,
|
| 226 |
+
**kwargs: Any,
|
| 227 |
+
):
|
| 228 |
+
super().__init__(dataset=dataset, rubric=rubric, **kwargs)
|
| 229 |
+
self.enable_logging = enable_logging
|
| 230 |
+
self.logger = logging.getLogger("sharegpt_polar.env")
|
| 231 |
+
|
| 232 |
+
async def setup_state(self, state: State, **kwargs: Any) -> State:
|
| 233 |
+
state.setdefault("future_turns", state["info"].get("future_turns", []))
|
| 234 |
+
return state
|
| 235 |
+
|
| 236 |
+
async def is_completed(self, messages: Messages, state: State, **kwargs: Any) -> bool:
|
| 237 |
+
total_turns = len(state["info"].get("reference", []))
|
| 238 |
+
if self.enable_logging:
|
| 239 |
+
self.logger.debug(
|
| 240 |
+
"Checking completion state",
|
| 241 |
+
extra={"current_turn": state.get("turn", 0), "total_turns": total_turns},
|
| 242 |
+
)
|
| 243 |
+
return state.get("turn", 0) >= total_turns
|
| 244 |
+
|
| 245 |
+
async def env_response(self, messages: Messages, state: State, **kwargs: Any) -> tuple[Messages, State]:
|
| 246 |
+
future_turns: list[list[dict[str, Any]]] = state.get("future_turns", [])
|
| 247 |
+
turn_index = state.get("turn", 0) - 1
|
| 248 |
+
if self.enable_logging:
|
| 249 |
+
self.logger.debug(
|
| 250 |
+
"Providing future turn",
|
| 251 |
+
extra={"turn_index": turn_index, "future_turn_count": len(future_turns)},
|
| 252 |
+
)
|
| 253 |
+
if 0 <= turn_index < len(future_turns):
|
| 254 |
+
return future_turns[turn_index], state
|
| 255 |
+
return [], state
|
| 256 |
+
|
| 257 |
+
def process_chat_format_vllm( # type: ignore[override]
|
| 258 |
+
self,
|
| 259 |
+
prompt: list[dict[str, Any]],
|
| 260 |
+
completion: list[dict[str, Any]],
|
| 261 |
+
state: State,
|
| 262 |
+
processing_class: Any,
|
| 263 |
+
mask_env_responses: bool = False,
|
| 264 |
+
) -> tuple[list[int], list[int], list[int], list[int], list[float]]:
|
| 265 |
+
# Clean messages to remove tool-related fields that might trigger template errors
|
| 266 |
+
def clean_message(msg: dict[str, Any]) -> dict[str, Any]:
|
| 267 |
+
return {k: v for k, v in msg.items() if k not in {"tool_calls", "tool_call_id"}}
|
| 268 |
+
|
| 269 |
+
responses = state.get("responses", [])
|
| 270 |
+
responses_idx = 0
|
| 271 |
+
zipped: list[tuple[dict[str, Any], Any | None]] = []
|
| 272 |
+
for turn in completion:
|
| 273 |
+
if turn.get("role") == "assistant":
|
| 274 |
+
zipped.append((turn, responses[responses_idx]))
|
| 275 |
+
responses_idx += 1
|
| 276 |
+
else:
|
| 277 |
+
zipped.append((turn, None))
|
| 278 |
+
assert len(responses) == responses_idx, "Responses not fully consumed"
|
| 279 |
+
assert len(zipped) == len(completion), "Length mismatch"
|
| 280 |
+
|
| 281 |
+
clean_prompt = [clean_message(msg) for msg in prompt]
|
| 282 |
+
prompt_ids: list[int] = processing_class.apply_chat_template(
|
| 283 |
+
conversation=clean_prompt, # type: ignore[arg-type]
|
| 284 |
+
add_generation_prompt=True,
|
| 285 |
+
tools=None,
|
| 286 |
+
)
|
| 287 |
+
messages_consumed = [clean_message(m) for m in prompt]
|
| 288 |
+
prompt_mask: list[int] = [0] * len(prompt_ids)
|
| 289 |
+
completion_ids: list[int] = []
|
| 290 |
+
completion_mask: list[int] = []
|
| 291 |
+
completion_logprobs: list[float] = []
|
| 292 |
+
i = 0
|
| 293 |
+
while i < len(zipped):
|
| 294 |
+
message, response = zipped[i]
|
| 295 |
+
clean_msg = clean_message(message)
|
| 296 |
+
if message.get("role") == "assistant":
|
| 297 |
+
if response is not None:
|
| 298 |
+
completion_turn_ids = self.parse_chat_completion_tokens(response)
|
| 299 |
+
completion_turn_mask = [1] * len(completion_turn_ids)
|
| 300 |
+
completion_turn_logprobs = self.parse_chat_completion_logprobs(response)
|
| 301 |
+
else:
|
| 302 |
+
completion_turn_ids = []
|
| 303 |
+
completion_turn_mask = []
|
| 304 |
+
completion_turn_logprobs = []
|
| 305 |
+
completion_ids.extend(completion_turn_ids)
|
| 306 |
+
completion_mask.extend(completion_turn_mask)
|
| 307 |
+
completion_logprobs.extend(completion_turn_logprobs)
|
| 308 |
+
messages_consumed.append(clean_msg)
|
| 309 |
+
i += 1
|
| 310 |
+
continue
|
| 311 |
+
|
| 312 |
+
consecutive_messages = [clean_msg]
|
| 313 |
+
j = i + 1
|
| 314 |
+
while j < len(zipped) and zipped[j][0].get("role") != "assistant":
|
| 315 |
+
consecutive_messages.append(clean_message(zipped[j][0]))
|
| 316 |
+
j += 1
|
| 317 |
+
|
| 318 |
+
base_tokens: list[int] = processing_class.apply_chat_template(
|
| 319 |
+
conversation=messages_consumed, # type: ignore[arg-type]
|
| 320 |
+
add_generation_prompt=True,
|
| 321 |
+
tools=None,
|
| 322 |
+
)
|
| 323 |
+
extended_tokens: list[int] = processing_class.apply_chat_template(
|
| 324 |
+
conversation=messages_consumed + consecutive_messages, # type: ignore[arg-type]
|
| 325 |
+
add_generation_prompt=True,
|
| 326 |
+
tools=None,
|
| 327 |
+
)
|
| 328 |
+
prefix_len = 0
|
| 329 |
+
max_len = min(len(base_tokens), len(extended_tokens))
|
| 330 |
+
while prefix_len < max_len and base_tokens[prefix_len] == extended_tokens[prefix_len]:
|
| 331 |
+
prefix_len += 1
|
| 332 |
+
if self.enable_logging and prefix_len != len(base_tokens):
|
| 333 |
+
self.logger.debug(
|
| 334 |
+
"Token prefix adjusted",
|
| 335 |
+
extra={"prefix_len": prefix_len, "base_len": len(base_tokens)},
|
| 336 |
+
)
|
| 337 |
+
completion_turn_ids = extended_tokens[prefix_len:]
|
| 338 |
+
if mask_env_responses:
|
| 339 |
+
completion_turn_mask = [0] * len(completion_turn_ids)
|
| 340 |
+
else:
|
| 341 |
+
completion_turn_mask = [1] * len(completion_turn_ids)
|
| 342 |
+
completion_turn_logprobs = [0.0] * len(completion_turn_ids)
|
| 343 |
+
completion_ids.extend(completion_turn_ids)
|
| 344 |
+
completion_mask.extend(completion_turn_mask)
|
| 345 |
+
completion_logprobs.extend(completion_turn_logprobs)
|
| 346 |
+
messages_consumed.extend(consecutive_messages)
|
| 347 |
+
i = j
|
| 348 |
+
|
| 349 |
+
return (
|
| 350 |
+
prompt_ids,
|
| 351 |
+
prompt_mask,
|
| 352 |
+
completion_ids,
|
| 353 |
+
completion_mask,
|
| 354 |
+
completion_logprobs,
|
| 355 |
+
)
|
| 356 |
+
|
| 357 |
+
|
| 358 |
+
def load_environment(
|
| 359 |
+
dataset_name: str | None = None,
|
| 360 |
+
*,
|
| 361 |
+
dataset_split: str = "train",
|
| 362 |
+
dataset_files: dict[str, str] | None = None,
|
| 363 |
+
data_path: str | Path | None = None,
|
| 364 |
+
server_address: str,
|
| 365 |
+
reward_model: str = DEFAULT_MODEL,
|
| 366 |
+
reward_scheme: type[vf.Rubric] | None = None,
|
| 367 |
+
max_turns: int = -1,
|
| 368 |
+
enable_logging: bool = False,
|
| 369 |
+
logger: logging.Logger | None = None,
|
| 370 |
+
**env_kwargs: Any,
|
| 371 |
+
) -> ShareGPTPolarEnv:
|
| 372 |
+
if dataset_name is None and data_path is None:
|
| 373 |
+
raise ValueError("Either 'dataset_name' or 'data_path' must be provided")
|
| 374 |
+
|
| 375 |
+
if dataset_name is not None:
|
| 376 |
+
hf_dataset = load_dataset(dataset_name, split=dataset_split, data_files=dataset_files)
|
| 377 |
+
else:
|
| 378 |
+
hf_dataset = load_dataset("json", data_files=str(data_path), split="train")
|
| 379 |
+
|
| 380 |
+
def to_multi_turn(example: dict[str, Any]) -> dict[str, Any]:
|
| 381 |
+
conversations = example.get("conversations") or []
|
| 382 |
+
if not _has_assistant(conversations):
|
| 383 |
+
return {
|
| 384 |
+
"prompt": [],
|
| 385 |
+
"info": {
|
| 386 |
+
"reference": [],
|
| 387 |
+
"future_turns": [],
|
| 388 |
+
},
|
| 389 |
+
"valid": False,
|
| 390 |
+
}
|
| 391 |
+
|
| 392 |
+
messages = _ensure_messages(conversations)
|
| 393 |
+
prompt, reference, future_turns, user_contexts = _partition_conversation(messages)
|
| 394 |
+
flattened_future = [msg for block in future_turns for msg in block]
|
| 395 |
+
if any(msg.get("role") != "user" for msg in flattened_future):
|
| 396 |
+
return {
|
| 397 |
+
"prompt": [],
|
| 398 |
+
"info": {
|
| 399 |
+
"reference": [],
|
| 400 |
+
"future_turns": [],
|
| 401 |
+
},
|
| 402 |
+
"valid": False,
|
| 403 |
+
}
|
| 404 |
+
if any(not msg.get("content") for msg in flattened_future):
|
| 405 |
+
return {
|
| 406 |
+
"prompt": [],
|
| 407 |
+
"info": {
|
| 408 |
+
"reference": [],
|
| 409 |
+
"future_turns": [],
|
| 410 |
+
},
|
| 411 |
+
"valid": False,
|
| 412 |
+
}
|
| 413 |
+
|
| 414 |
+
return {
|
| 415 |
+
"prompt": prompt,
|
| 416 |
+
"info": {
|
| 417 |
+
"reference": reference,
|
| 418 |
+
"future_turns": future_turns,
|
| 419 |
+
"user_contexts": user_contexts,
|
| 420 |
+
},
|
| 421 |
+
"valid": True,
|
| 422 |
+
}
|
| 423 |
+
|
| 424 |
+
dataset = hf_dataset.map(to_multi_turn, remove_columns=hf_dataset.column_names)
|
| 425 |
+
dataset = dataset.filter(lambda example: example.get("valid", False))
|
| 426 |
+
if "valid" in dataset.column_names:
|
| 427 |
+
dataset = dataset.remove_columns("valid")
|
| 428 |
+
|
| 429 |
+
effective_logger = logger or logging.getLogger("sharegpt_polar")
|
| 430 |
+
if enable_logging:
|
| 431 |
+
effective_logger.info(
|
| 432 |
+
"Initializing ShareGPTPolar environment",
|
| 433 |
+
extra={
|
| 434 |
+
"dataset_name": dataset_name,
|
| 435 |
+
"data_path": str(data_path) if data_path else None,
|
| 436 |
+
"server_address": server_address,
|
| 437 |
+
},
|
| 438 |
+
)
|
| 439 |
+
|
| 440 |
+
client = PoolingClient(
|
| 441 |
+
base_url=server_address,
|
| 442 |
+
model=reward_model,
|
| 443 |
+
logger=effective_logger,
|
| 444 |
+
enable_logging=enable_logging,
|
| 445 |
+
)
|
| 446 |
+
|
| 447 |
+
rubric_cls = reward_scheme or vf.Rubric
|
| 448 |
+
rubric = rubric_cls(funcs=[polar_reward])
|
| 449 |
+
rubric.class_objects["reward_client"] = client
|
| 450 |
+
rubric.class_objects["logger"] = effective_logger
|
| 451 |
+
rubric.class_objects["enable_logging"] = enable_logging
|
| 452 |
+
|
| 453 |
+
env_kwargs.setdefault("max_concurrent", 1)
|
| 454 |
+
return ShareGPTPolarEnv(
|
| 455 |
+
dataset=dataset,
|
| 456 |
+
rubric=rubric,
|
| 457 |
+
max_turns=max_turns,
|
| 458 |
+
enable_logging=enable_logging,
|
| 459 |
+
**env_kwargs,
|
| 460 |
+
)
|
| 461 |
+
|
| 462 |
+
|