File size: 9,936 Bytes
c00ff2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import torch
from torch import nn
from transformers import WhisperConfig
from transformers.activations import ACT2FN
from transformers.models.whisper.modeling_whisper import WHISPER_ATTENTION_CLASSES
import torch.nn.functional as F
from .coattention import CoAttention
from .layers import CustomLinear, CustomDiagonalLinear, Gate
class LowRankApproxSelectFirst(nn.Module):
def __init__(self, d_in, d_out, rank):
super().__init__()
self.d_in = d_in
self.d_out = d_out
self.rank = rank
self.proj_in = nn.Linear(d_in, rank)
self.proj_out = nn.Linear(rank, d_out)
def forward(self, x):
return self.proj_out(self.proj_in(x))
def _init_weights(self):
# Create low-rank approximation of the identity projection from first d_out of input
eye = torch.eye(self.d_out, self.d_in) # (d_out x d_in)
# Low-rank SVD of eye matrix
U, S, Vh = torch.linalg.svd(eye, full_matrices=False) # U: (d_out x d_out), Vh: (d_in x d_in)
U_k = U[:, :self.rank] # (d_out x rank)
S_k = S[:self.rank] # (rank,)
V_k = Vh[:self.rank, :] # (rank x d_in)
A = V_k # (rank x d_in)
B = U_k @ torch.diag(S_k) # (d_out x rank)
# Set weights
self.proj_in.weight.data.copy_(A)
self.proj_in.bias.data.zero_()
self.proj_out.weight.data.copy_(B)
self.proj_out.bias.data.zero_()
class TACBlock(nn.Module):
def __init__(self, config: WhisperConfig, d_int_factor: float = 1, num_speakers=2):
super().__init__()
d = config.d_model
d_prime = int(d * d_int_factor)
self.num_speakers = num_speakers
self.proj_in_1 = nn.Linear(d, d_prime, bias=True)
self.proj_in_2 = nn.Linear(d, d_prime, bias=True)
self.proj_int = nn.Linear(d_prime, d_prime,bias=True)
self.proj_out_1 = nn.Linear(d+d_prime, d,bias=True)
self.proj_out_2 = nn.Linear(d+d_prime, d,bias=True)
self.activation_fn = ACT2FN[config.activation_function]
self.norms = nn.ModuleList([nn.LayerNorm(d) for _ in range(self.num_speakers)])
self.gate = Gate(self.num_speakers, 0.01)
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
# hidden_states: (B, self.num_speakers, T, F)
x_proj = torch.stack([self.activation_fn(self.proj_in_1(hidden_states[:,0])), self.activation_fn(self.proj_in_2(hidden_states[:, 1]))], dim=1) # (B, 2, T, d')
x_mean = x_proj.mean(dim=1, keepdim=True) # (B, 1, T, d')
z = self.activation_fn(self.proj_int(x_mean)) # (B, 1, T, d')
z_expand = z.expand(-1, self.num_speakers, -1, -1) # (B, self.num_speakers, T, d')
x_cat = torch.cat([hidden_states, z_expand], dim=-1) # (B, self.num_speakers, T, d + d')
x_out = torch.stack([self.norms[0](self.proj_out_1(x_cat[:, 0])), self.norms[1](self.proj_out_2(x_cat[:, 1]))], dim=1) # (B, self.num_speakers, T, d)
return hidden_states + self.gate(x_out, dim=1)
class CrossAttentionBlock(nn.Module):
def __init__(self, config: WhisperConfig):
super().__init__()
self.embed_dim = config.d_model
self.num_speakers = getattr(config, "mt_num_speakers", 2)
if self.num_speakers != 2:
raise ValueError("CrossAttentionBlock supports only 2 speakers.")
# Separate attention block per speaker
self.attn_blocks = nn.ModuleList([
WHISPER_ATTENTION_CLASSES[config._attn_implementation](
embed_dim=self.embed_dim,
num_heads=config.encoder_attention_heads,
dropout=config.attention_dropout,
config=config,
)
for _ in range(self.num_speakers)
])
self.norms = nn.ModuleList([nn.LayerNorm(self.embed_dim) for _ in range(self.num_speakers)])
self.gate = Gate(self.num_speakers, 0.01)
def forward(self, hidden_states):
# hidden_states: (B, 2, T, F)
outputs = []
for s in range(self.num_speakers):
q = hidden_states[:, s] # (B, T, F)
other_s = 1 - s
kv = hidden_states[:, other_s] # (B, T, F)
attn_out, _, _ = self.attn_blocks[s](hidden_states=q, key_value_states=kv) # (B, T, F)
outputs.append(self.norms[s](attn_out[:, None, :, :]))
outputs = torch.concat(outputs, dim=1)
outputs_modulated = self.gate(outputs, dim=1) + hidden_states
return outputs_modulated
class CompetitiveCrossAttentionBlock(nn.Module):
def __init__(self, config):
super().__init__()
self.embed_dim = config.d_model
self.num_heads = config.encoder_attention_heads
self.head_dim = self.embed_dim // self.num_heads
assert (
self.head_dim * self.num_heads == self.embed_dim
), "embed_dim must be divisible by num_heads"
self.num_speakers = getattr(config, "mt_num_speakers", 2)
if self.num_speakers != 2:
raise ValueError("CompetitiveCrossAttentionBlock supports only 2 speakers.")
# Separate projections for Q, K, V
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.norms = nn.ModuleList([nn.LayerNorm(self.embed_dim) for _ in range(self.num_speakers)])
self.eps = 1e-6
self.gate = Gate(self.num_speakers, 0.01)
def _shape(self, tensor, seq_len, batch_size):
# reshape into (B, num_heads, T, head_dim)
return tensor.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
def forward(self, hidden_states):
# hidden_states: (B, 2, T, F)
B, _, T, _ = hidden_states.shape
h1, h2 = hidden_states[:, 0], hidden_states[:, 1] # (B, T, F)
# Project Q,K,V
Q1 = self.q_proj(h1) # (B, T, F)
K2 = self.k_proj(h2)
V2 = self.v_proj(h2)
Q2 = self.q_proj(h2)
K1 = self.k_proj(h1)
V1 = self.v_proj(h1)
# Reshape for multi-head attention
Q1 = self._shape(Q1, T, B) # (B, heads, T, head_dim)
K2 = self._shape(K2, T, B)
V2 = self._shape(V2, T, B)
Q2 = self._shape(Q2, T, B)
K1 = self._shape(K1, T, B)
V1 = self._shape(V1, T, B)
# Scaled dot-product attention logits
scale = 1 / (self.head_dim ** 0.5)
L_1to2 = torch.matmul(Q1, K2.transpose(-1, -2)) * scale # (B, heads, T, T)
L_2to1 = torch.matmul(Q2, K1.transpose(-1, -2)) * scale # (B, heads, T, T)
# Softmax over last dim (keys)
S_1to2 = F.softmax(L_1to2, dim=-1)
S_2to1 = F.softmax(L_2to1, dim=-1)
# Competitive normalization (soft exclusivity)
M_joint = S_1to2 + S_2to1 + self.eps
A_1to2 = S_1to2 / M_joint
A_2to1 = S_2to1 / M_joint
# Weighted sum of values
H1_attn = torch.matmul(A_1to2, V2) # (B, heads, T, head_dim)
H2_attn = torch.matmul(A_2to1, V1)
# Concatenate heads back
H1_attn = H1_attn.transpose(1, 2).contiguous().view(B, T, self.embed_dim) # (B, T, F)
H2_attn = H2_attn.transpose(1, 2).contiguous().view(B, T, self.embed_dim)
# Output projection
H1_attn = self.norms[0](self.out_proj(H1_attn))
H2_attn = self.norms[1](self.out_proj(H2_attn))
# Residuals
out = hidden_states + self.gate(torch.concat([H1_attn[:, None, :, :], H2_attn[:, None, :, :]], dim=1), dim=1)
return out # (B, 2, T, F)
class CoAttentionWrapper(nn.Module):
def __init__(self, config, num_speakers=2):
super().__init__()
self.coa = CoAttention(embed_dim=config.d_model, single_dim=config.d_model//2, multi_dim=config.d_model // 4, n_heads=config.encoder_attention_heads, attn_dropout=config.attention_dropout)
self.gate = Gate(num_speakers, 0.01)
def forward(self, coa_input: torch.Tensor) -> torch.Tensor:
# hidden_states: (B, 2, T, F)
hidden_states = coa_input.permute(-2, 0, 1, -1)
hidden_states = self.coa(hidden_states)
out = coa_input + self.gate(hidden_states.permute(1, 2, 0, -1), dim=1)
return out
class SpeakerCommunicationBlock(nn.Module):
def __init__(self, config, scb_method):
super().__init__()
self.num_speakers = getattr(config, "mt_num_speakers", 2)
self.embed_dim = config.d_model
self.scb_method = scb_method
self.config = config
if self.scb_method == "tac":
self.method = TACBlock(config)
elif self.scb_method == "cross_attention":
self.method = CrossAttentionBlock(config)
elif self.scb_method == "competitive_cross_attention":
self.method = CompetitiveCrossAttentionBlock(config)
elif self.scb_method == "co_attention":
self.method = CoAttentionWrapper(config)
elif self.scb_method == "identity":
self.method = (nn.Parameter(torch.zeros(self.embed_dim)) if config.fddt_bias_only else (
CustomDiagonalLinear(self.embed_dim, bias=True, init_eye_val=1.0) if config.fddt_is_diagonal else CustomLinear(
self.embed_dim, self.embed_dim, bias=True, init_eye_val=1.0)))
else:
raise ValueError(f"Unsupported scb_method: {self.scb_method}")
def forward(self, x):
# x: (B, T, F)
B, T, F = x.shape
S = self.num_speakers
# Reshape to (B//S, S, T, F)
x_reshaped = x.view(B//S, S, T, F)
# Call the selected method
out = self.method(x_reshaped)
# Reshape back (B, T, F)
out_merged = out.view(B, T, F)
return out_merged
|