File size: 9,936 Bytes
c00ff2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import torch
from torch import nn
from transformers import WhisperConfig
from transformers.activations import ACT2FN
from transformers.models.whisper.modeling_whisper import WHISPER_ATTENTION_CLASSES
import torch.nn.functional as F
from .coattention import CoAttention
from .layers import CustomLinear, CustomDiagonalLinear, Gate

class LowRankApproxSelectFirst(nn.Module):
    def __init__(self, d_in, d_out, rank):
        super().__init__()
        self.d_in = d_in
        self.d_out = d_out
        self.rank = rank
        self.proj_in = nn.Linear(d_in, rank)
        self.proj_out = nn.Linear(rank, d_out)

    def forward(self, x):
        return self.proj_out(self.proj_in(x))

    def _init_weights(self):
        # Create low-rank approximation of the identity projection from first d_out of input
        eye = torch.eye(self.d_out, self.d_in)  # (d_out x d_in)

        # Low-rank SVD of eye matrix
        U, S, Vh = torch.linalg.svd(eye, full_matrices=False)  # U: (d_out x d_out), Vh: (d_in x d_in)

        U_k = U[:, :self.rank]              # (d_out x rank)
        S_k = S[:self.rank]                 # (rank,)
        V_k = Vh[:self.rank, :]             # (rank x d_in)

        A = V_k                             # (rank x d_in)
        B = U_k @ torch.diag(S_k)           # (d_out x rank)

        # Set weights
        self.proj_in.weight.data.copy_(A)
        self.proj_in.bias.data.zero_()
        self.proj_out.weight.data.copy_(B)
        self.proj_out.bias.data.zero_()



class TACBlock(nn.Module):
    def __init__(self, config: WhisperConfig, d_int_factor: float = 1, num_speakers=2):
        super().__init__()
        d = config.d_model
        d_prime = int(d * d_int_factor)
        self.num_speakers = num_speakers
        self.proj_in_1 = nn.Linear(d, d_prime, bias=True)
        self.proj_in_2 = nn.Linear(d, d_prime, bias=True)
        self.proj_int = nn.Linear(d_prime, d_prime,bias=True)
        self.proj_out_1 = nn.Linear(d+d_prime, d,bias=True)
        self.proj_out_2 = nn.Linear(d+d_prime, d,bias=True)
        self.activation_fn = ACT2FN[config.activation_function]
        self.norms = nn.ModuleList([nn.LayerNorm(d) for _ in range(self.num_speakers)])
        self.gate = Gate(self.num_speakers, 0.01)

    def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
        # hidden_states: (B, self.num_speakers, T, F)

        x_proj = torch.stack([self.activation_fn(self.proj_in_1(hidden_states[:,0])), self.activation_fn(self.proj_in_2(hidden_states[:, 1]))], dim=1)  # (B, 2, T, d')
        x_mean = x_proj.mean(dim=1, keepdim=True)  # (B, 1, T, d')
        z = self.activation_fn(self.proj_int(x_mean))  # (B, 1, T, d')

        z_expand = z.expand(-1, self.num_speakers, -1, -1)  # (B, self.num_speakers, T, d')
        x_cat = torch.cat([hidden_states, z_expand], dim=-1)  # (B, self.num_speakers, T, d + d')
        x_out = torch.stack([self.norms[0](self.proj_out_1(x_cat[:, 0])), self.norms[1](self.proj_out_2(x_cat[:, 1]))], dim=1)  # (B, self.num_speakers, T, d)
        return hidden_states + self.gate(x_out, dim=1)


class CrossAttentionBlock(nn.Module):
    def __init__(self, config: WhisperConfig):
        super().__init__()
        self.embed_dim = config.d_model

        self.num_speakers = getattr(config, "mt_num_speakers", 2)
        if self.num_speakers != 2:
            raise ValueError("CrossAttentionBlock supports only 2 speakers.")

        # Separate attention block per speaker
        self.attn_blocks = nn.ModuleList([
            WHISPER_ATTENTION_CLASSES[config._attn_implementation](
                embed_dim=self.embed_dim,
                num_heads=config.encoder_attention_heads,
                dropout=config.attention_dropout,
                config=config,
            )
            for _ in range(self.num_speakers)
        ])

        self.norms = nn.ModuleList([nn.LayerNorm(self.embed_dim) for _ in range(self.num_speakers)])
        self.gate = Gate(self.num_speakers, 0.01)

    def forward(self, hidden_states):
        # hidden_states: (B, 2, T, F)
        outputs = []
        for s in range(self.num_speakers):
            q = hidden_states[:, s]  # (B, T, F)
            other_s = 1 - s
            kv = hidden_states[:, other_s]  # (B, T, F)

            attn_out, _, _ = self.attn_blocks[s](hidden_states=q, key_value_states=kv)  # (B, T, F)
            outputs.append(self.norms[s](attn_out[:, None, :, :]))
        outputs =  torch.concat(outputs, dim=1)
        outputs_modulated = self.gate(outputs, dim=1) + hidden_states
        return outputs_modulated


class CompetitiveCrossAttentionBlock(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.embed_dim = config.d_model
        self.num_heads = config.encoder_attention_heads
        self.head_dim = self.embed_dim // self.num_heads
        assert (
                self.head_dim * self.num_heads == self.embed_dim
        ), "embed_dim must be divisible by num_heads"

        self.num_speakers = getattr(config, "mt_num_speakers", 2)
        if self.num_speakers != 2:
            raise ValueError("CompetitiveCrossAttentionBlock supports only 2 speakers.")

        # Separate projections for Q, K, V
        self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
        self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
        self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)

        self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)

        self.norms = nn.ModuleList([nn.LayerNorm(self.embed_dim) for _ in range(self.num_speakers)])
        self.eps = 1e-6
        self.gate = Gate(self.num_speakers, 0.01)

    def _shape(self, tensor, seq_len, batch_size):
        # reshape into (B, num_heads, T, head_dim)
        return tensor.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)

    def forward(self, hidden_states):
        # hidden_states: (B, 2, T, F)
        B, _, T, _ = hidden_states.shape

        h1, h2 = hidden_states[:, 0], hidden_states[:, 1]  # (B, T, F)

        # Project Q,K,V
        Q1 = self.q_proj(h1)  # (B, T, F)
        K2 = self.k_proj(h2)
        V2 = self.v_proj(h2)

        Q2 = self.q_proj(h2)
        K1 = self.k_proj(h1)
        V1 = self.v_proj(h1)

        # Reshape for multi-head attention
        Q1 = self._shape(Q1, T, B)  # (B, heads, T, head_dim)
        K2 = self._shape(K2, T, B)
        V2 = self._shape(V2, T, B)

        Q2 = self._shape(Q2, T, B)
        K1 = self._shape(K1, T, B)
        V1 = self._shape(V1, T, B)

        # Scaled dot-product attention logits
        scale = 1 / (self.head_dim ** 0.5)
        L_1to2 = torch.matmul(Q1, K2.transpose(-1, -2)) * scale  # (B, heads, T, T)
        L_2to1 = torch.matmul(Q2, K1.transpose(-1, -2)) * scale  # (B, heads, T, T)

        # Softmax over last dim (keys)
        S_1to2 = F.softmax(L_1to2, dim=-1)
        S_2to1 = F.softmax(L_2to1, dim=-1)

        # Competitive normalization (soft exclusivity)
        M_joint = S_1to2 + S_2to1 + self.eps
        A_1to2 = S_1to2 / M_joint
        A_2to1 = S_2to1 / M_joint

        # Weighted sum of values
        H1_attn = torch.matmul(A_1to2, V2)  # (B, heads, T, head_dim)
        H2_attn = torch.matmul(A_2to1, V1)

        # Concatenate heads back
        H1_attn = H1_attn.transpose(1, 2).contiguous().view(B, T, self.embed_dim)  # (B, T, F)
        H2_attn = H2_attn.transpose(1, 2).contiguous().view(B, T, self.embed_dim)

        # Output projection
        H1_attn = self.norms[0](self.out_proj(H1_attn))
        H2_attn = self.norms[1](self.out_proj(H2_attn))

        # Residuals
        out = hidden_states + self.gate(torch.concat([H1_attn[:, None, :, :], H2_attn[:, None, :, :]], dim=1), dim=1)

        return out # (B, 2, T, F)


class CoAttentionWrapper(nn.Module):
    def __init__(self, config, num_speakers=2):
        super().__init__()
        self.coa = CoAttention(embed_dim=config.d_model, single_dim=config.d_model//2, multi_dim=config.d_model // 4, n_heads=config.encoder_attention_heads, attn_dropout=config.attention_dropout)
        self.gate = Gate(num_speakers, 0.01)

    def forward(self, coa_input: torch.Tensor) -> torch.Tensor:
        # hidden_states: (B, 2, T, F)
        hidden_states = coa_input.permute(-2, 0, 1, -1)
        hidden_states = self.coa(hidden_states)
        out = coa_input + self.gate(hidden_states.permute(1, 2, 0, -1), dim=1)
        return out


class SpeakerCommunicationBlock(nn.Module):
    def __init__(self, config, scb_method):
        super().__init__()
        self.num_speakers = getattr(config, "mt_num_speakers", 2)
        self.embed_dim = config.d_model
        self.scb_method = scb_method
        self.config = config

        if self.scb_method == "tac":
            self.method = TACBlock(config)
        elif self.scb_method == "cross_attention":
            self.method = CrossAttentionBlock(config)
        elif self.scb_method == "competitive_cross_attention":
            self.method = CompetitiveCrossAttentionBlock(config)
        elif self.scb_method == "co_attention":
            self.method = CoAttentionWrapper(config)
        elif self.scb_method == "identity":
            self.method = (nn.Parameter(torch.zeros(self.embed_dim)) if config.fddt_bias_only else (
                CustomDiagonalLinear(self.embed_dim, bias=True, init_eye_val=1.0) if config.fddt_is_diagonal else CustomLinear(
                    self.embed_dim, self.embed_dim, bias=True, init_eye_val=1.0)))
        else:
            raise ValueError(f"Unsupported scb_method: {self.scb_method}")

    def forward(self, x):
        # x: (B, T, F)
        B, T, F = x.shape
        S = self.num_speakers

        # Reshape to (B//S, S, T, F)
        x_reshaped = x.view(B//S, S, T, F)

        # Call the selected method
        out = self.method(x_reshaped)

        # Reshape back (B, T, F)
        out_merged = out.view(B, T, F)
        return out_merged